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What are the novel findings of this work?
This study presents a new model for prediction of
a small-for-gestational-age (SGA) neonate, in which
gestational age (GA) at delivery and birth-weight Z-score
are treated as continuous variables. In pregnancies at
low risk for SGA, the joint distribution of GA at
delivery and birth-weight Z-score is shifted to higher
GA at delivery and birth-weight Z-score values, and
in high-risk pregnancies, the model shifts the joint
distribution towards lower values.

What are the clinical implications of this work?
Prediction of SGA generally involves dichotomization
of both GA at delivery and birth-weight Z-score. A
continuous model has been developed, in which any
specific cut-off of birth-weight Z-score and GA at delivery
can be applied to define a risk. Therefore, a single model
can be used for any choice of cut-offs for birth-weight
Z-score and GA at delivery. This model will form the
basis for a Bayesian update by adding biomarkers.

ABSTRACT

Background The established method of identifying
a group of women at high risk of delivering
a small-for-gestational-age (SGA) neonate, requiring
increased surveillance, is use of risk scoring systems
based on maternal demographic characteristics and med-
ical history. Although this approach is relatively simple
to perform, it does not provide patient-specific risks and
has an uncertain performance in predicting SGA. Another
approach to predict delivery of a SGA neonate is to use
logistic regression models that combine maternal factors
with first-trimester biomarkers. These models provide
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patient-specific risks for different prespecified cut-offs
of birth-weight percentile and gestational age (GA) at
delivery.

Objectives First, to develop a competing-risks model
for prediction of SGA based on maternal demographic
characteristics and medical history, in which GA at the
time of delivery and birth-weight Z-score are treated as
continuous variables. Second, to compare the predictive
performance of the new model for SGA neonates to that
of previous methods.

Methods This was a prospective observational study in
124 443 women with singleton pregnancy undergoing
routine ultrasound examination at 11 + 0 to 13 + 6 weeks’
gestation. The dataset was divided randomly into a
training and a test dataset. The training dataset was
used to develop a model for the joint distribution of
GA at delivery and birth-weight Z-score from variables
of maternal characteristics and medical history. This
patient-specific joint Gaussian distribution of GA at
delivery and birth-weight Z-score allows risk calculation
for SGA defined in terms of different birth-weight
percentiles and GA. The new model was then validated
in the test dataset to assess performance of screening and
we compared its predictive performance to that of logistic
regression models for different SGA definitions.

Results In the new model, the joint Gaussian distribution
of GA at delivery and birth-weight Z-score is shifted to
lower GA at delivery and birth-weight Z-score values,
resulting in an increased risk for SGA, by lower maternal
weight and height, black, East Asian, South Asian and
mixed racial origin, medical history of chronic hyperten-
sion, diabetes mellitus and systemic lupus erythematosus
and/or antiphospholipid syndrome, conception by in-vitro
fertilization and smoking. In parous women, variables
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from the last pregnancy that increased the risk for SGA
were history of pre-eclampsia or stillbirth, decreasing
birth-weight Z-score and decreasing GA at delivery of the
last pregnancy and interpregnancy interval < 0.5 years.
In the test dataset, at a false-positive rate of 10%, the
new model predicted 30.1%, 32.1%, 32.2% and 37.8%
of cases of a SGA neonate with birth weight < 10th per-
centile delivered at < 42, < 37, < 34 and < 30 weeks’
gestation, respectively, which were similar or higher than
the respective values achieved by a series of logistic regres-
sion models. The calibration study demonstrated good
agreement between the predicted risks and the observed
incidence of SGA in both the training and test datasets.

Conclusions A new competing-risks model, based on
maternal characteristics and medical history, provides
estimation of patient-specific risks for SGA in which
GA at delivery and birth-weight Z-score are treated as
continuous variables. Such estimation of the a-priori risk
for SGA is an essential first step in the use of Bayes’
theorem to combine maternal factors with biomarkers for
the continuing development of more effective methods of
screening for SGA. Copyright © 2020 ISUOG. Published
by John Wiley & Sons Ltd.

INTRODUCTION

Small-for-gestational-age (SGA) neonates are at increased
risk of adverse perinatal outcome and development of
metabolic and cardiovascular diseases in adult life1–5.
With the expectation that these risks can be potentially
reduced by medical intervention, national societies from
many developed countries have issued guidelines on
monitoring and criteria for delivery of such pregnancies6.
However, there remains considerable uncertainty as to
how best to identify SGA fetuses7. The established method
of identifying a group of women at high risk of delivering
a SGA neonate, requiring increased surveillance, is use of
risk scoring systems; although this approach is relatively
simple to perform, it does not provide patient-specific
risks and has uncertain performance in predicting a
SGA neonate8. Another approach to early prediction of
delivery of a SGA neonate is to use logistic regression
models that combine maternal factors with first-trimester
biomarkers9–12. These models provide patient-specific
risks for different prespecified cut-offs of birth-weight
percentile and gestational age (GA) at delivery, which
has led to an arbitrary dichotomization of the disease;
different models for different SGA definitions are required,
and adding new biomarkers requires refitting the whole
model.

An alternative approach for prediction of a SGA
neonate is to consider SGA as a spectrum disorder,
the severity of which is continuously reflected in both
GA at delivery and Z-score of birth weight for GA.
The concept of this approach is similar to that of the
competing-risks model in the assessment of risk for
pre-eclampsia (PE)13–15. In this approach, which is based
on a survival-time model, every woman has a personalized

distribution of GA at delivery with PE and it is assumed
that, if the pregnancy were to continue indefinitely, all
women would develop PE; whether PE occurs depends on
competition between delivery before or after development
of PE. The risk of delivery with PE before a specified
GA, assuming no other cause of delivery, is given by the
area under the probability density curve. The new model
for SGA prediction uses a continuous personalized joint
bivariate Gaussian distribution of GA at delivery and
Z-score of birth weight. The risk for any desired SGA
definition is the volume under the surface of the joint
probability distribution.

The objectives of this study were, first, to develop a
new model for prediction of a SGA neonate, based on
maternal characteristics and history, in which GA at the
time of delivery and birth-weight Z-score are treated
as continuous variables, and, second, to compare the
predictive performance of the new model for a SGA
neonate to that of previous methods.

METHODS

Study population

The data for this study were derived from prospec-
tive screening for adverse obstetric outcomes in women
attending for their routine first hospital visit in preg-
nancy at King’s College Hospital, London and Medway
Maritime Hospital, Gillingham, UK, between March
2006 and December 2016. At this visit, at 11 + 0 to
13 + 6 weeks’ gestation, we recorded maternal charac-
teristics and medical history and performed combined
screening for aneuploidy16. GA was determined by the
measurement of fetal crown–rump length17. The par-
ticipants gave written informed consent for the study,
which was approved by the UK National Health Service
Research Ethics Committee.

The inclusion criteria for the study were singleton
pregnancy delivering a non-malformed liveborn or
stillborn neonate at ≥ 24 weeks’ gestation. We excluded
pregnancies with aneuploidy or major fetal abnormality
and those ending in termination, miscarriage or fetal death
at < 24 weeks’ gestation.

Patient characteristics

Patient characteristics included maternal age, racial origin
(white, black, South Asian, East Asian or mixed), method
of conception (natural or assisted by in-vitro fertilization
(IVF) or use of ovulation drugs), cigarette smoking during
pregnancy, medical history of chronic hypertension,
diabetes mellitus, systemic lupus erythematosus and/or
antiphospholipid syndrome, family history of PE in the
mother of the patient, and obstetric history, which
included parity (parous or nulliparous if no previous
delivery at ≥ 24 weeks’ gestation), previous pregnancy
with PE, previous stillbirth, GA at delivery and birth
weight of the neonate in the last pregnancy, and interval
in years between birth of the last child and estimated date
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of conception of the current pregnancy. Maternal weight
and height were measured, and body mass index was
calculated.

Outcome measures

Data on pregnancy outcome were collected from hospital
maternity records or the general medical practitioners
of the women. The outcome measures of the study
were birth of a neonate at or below different thresholds
of birth-weight percentile for different cut-offs of GA
at delivery. The Fetal Medicine Foundation fetal and
neonatal population weight charts were used to convert
birth weight to percentiles and Z-scores18.

Statistical analysis

Model development

The new approach uses a single continuous model that
provides a personalized joint Gaussian distribution of
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Figure 1 Contour plots of joint Gaussian distribution of
birth-weight Z-scores and gestational age (GA) at delivery in
high-risk pregnancy (a) and low-risk pregnancy (b). Birth weight
expressed in percentiles is shown on vertical right axis. 50%, 75%
and 95% contours are presented. Shaded area corresponds to risk
of delivery before 34 weeks’ gestation with small-for-gestational-age
neonate with birth weight < 10th percentile.

birth weight expressed as Z-scores and GA at delivery
(Figure 1). Therefore, any specific cut-off for birth-weight
Z-score and GA at delivery can be applied to define
a risk. Our model for personalized bivariate Gaussian
distribution of birth-weight Z-score and GA at delivery
was specified by the following elements: a regression
model for the mean for birth-weight Z-score, determined
from maternal characteristics; a regression model for the
mean for GA at delivery, determined from the mean
for birth-weight Z-score and maternal characteristics;
standard deviations for GA at delivery and birth-weight
Z-score, which were assumed to be the same for all
women and independent from maternal factors; and
the correlation coefficient between GA at delivery and
birth-weight Z-score, which was assumed to be constant
for all women and independent from maternal factors.
We assumed Gaussian distributions, constant standard
deviations and a constant correlation coefficient for
simplicity of interpretation. The model was fitted using
Markov chain Monte Carlo techniques which enabled
all parameters to be estimated within a single analysis.
To focus the model fit on preterm SGA, GAs greater
than 37 weeks were treated as censored observations at
37 weeks and birth-weight Z-scores greater than −1.2816
were censored at −1.2816 (Figure 2). The risk for SGA
is given by the volume under the distribution surface for
the region defined by the chosen birth-weight Z-score and
GA cut-offs (Figure 1). Established risk factors, including
maternal age in years, weight in kg, height in cm,
racial origin, method of conception, chronic hypertension,
diabetes mellitus and systemic lupus erythematosus and/or
antiphospholipid syndrome were included as covariates.
For parous women, interpregnancy interval in years, GA
at delivery of the previous pregnancy in weeks, previous
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Figure 2 Scatterplot showing birth-weight Z-score in 124 443
singleton pregnancies, according to gestational age (GA) at
delivery. Cases with birth weight > 10th percentile or GA at
delivery > 37 weeks were censored ( ).
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birth-weight Z-score, history of PE and history of stillbirth
were included as factors in our analysis. For maternal
height, previous pregnancy birth-weight Z-score and GA
at delivery in the previous pregnancy, a linear association
was assumed. For maternal weight, quadratic terms
were used, and for interpregnancy interval, fractional
polynomials were adopted.

Training and test datasets

Data were partitioned into a training and a test dataset by
random assignment of the sample of 124 443 pregnancies
into a training dataset of 62 221 pregnancies and a test
dataset of 62 222 pregnancies. The training data were
used for model development and fitting. The model was
then assessed in the test dataset for internal validation
purposes.

Predictive performance

The predictive performance of the model was assessed
by, first, the ability of the model to discriminate between
the SGA and non-SGA groups using the area under the
receiver-operating-characteristics curve (AUC) and the
detection rate of a SGA neonate of different severities
(birth weight < 10th or < 3rd percentile) at different
GA cut-offs (< 42, < 37, < 34 and < 30 weeks), at fixed
false-positive rates of 5%, 10% and 20%, and, second,
calibration by measurements of calibration intercept
and slope using logistic regression analysis of outcome
incidence against the logit of the respective risks.

Comparison with previous definitions of SGA
and logistic regression models

There is an apparent contradiction in the relationship
between ultrasonographic estimated fetal weight (EFW)
and birth-weight charts. Although the EFW recorded
within a few days of birth correlates strongly with
birth weight, and for a given GA they have essentially
the same median19, in reported reference ranges, the
median birth weight for gestational age for babies born
preterm is substantially lower than that of EFW9,20,21.
This difference is likely to be the consequence of
pathological fetal growth in a high proportion of preterm
births. Reference ranges of EFW are representative of
the whole population, whereas in the construction of
reference ranges of birth weight, particularly for GAs at
< 37 weeks, there is overrepresentation of pathological
pregnancies. One-third of preterm births are iatrogenic,
mainly for hypertensive disorders and/or suspected fetal
growth restriction, but there is also evidence that, in a
substantial proportion of spontaneous preterm births,
there is impaired placentation22–24. This problem of
underestimation of growth restriction in preterm births
has been overcome through the construction of a
birth-weight chart for the population of all babies at
a given GA, including those still in utero18.

We constructed a series of logistic regression models to
predict SGA (birth weight < 10th and < 3rd percentiles for
GAs at birth < 42, < 37, < 34 and < 30 weeks’ gestation),
defined by The Fetal Medicine Foundation birth-weight
charts18. All these models were also validated in the test
dataset.

The model was fitted within a Bayesian framework
using Markov chain Monte Carlo implemented in
WinBUGS25. The statistical software package R was also
used for data analyses26.

RESULTS

Characteristics of study population

The study population included 124 443 singleton preg-
nancies and the maternal and pregnancy characteristics
are given in Table 1.

Model for prediction of SGA neonate

The new model provides a personalized joint distribution
of birth-weight Z-score and GA at delivery. The model
for the mean of this joint distribution is specified, first,
by a regression model for the mean of birth-weight

Table 1 Maternal and pregnancy characteristics in study
population of 124 443 singleton pregnancies

Characteristic Value

Maternal age (years) 31.1 (26.9–35.3)
Maternal weight (kg) 67.0 (57.9–76.1)
Maternal height (cm) 164 (160–169)
BMI (kg/m2) 24.5 (21.4–27.8)
GA at examination (weeks) 12.7 (12.3–13.1)
Racial origin

White 93 954 (75.5)
Black 19 699 (15.8)
South Asian 5297 (4.3)
East Asian 2454 (2.0)
Mixed 3039 (2.4)

Conception
Natural 120 302 (96.7)
Ovulation induction 1492 (1.2)
In-vitro fertilization 2649 (2.1)

Medical history
Chronic hypertension 1569 (1.3)
Diabetes mellitus 1075 (0.9)
SLE/APS 244 (0.2)

Cigarette smoker 12 572 (10.1)
Family history of PE 5303 (4.3)
Parity

Nulliparous 58 492 (47.0)
Parous with previous PE or SGA < 10th 12 557 (10.1)
Parous with previous SGA < 10th 8580 (6.9)
Parous with previous PE and SGA < 10th 924 (0.7)

Pregnancy interval (years) 3.0 (1.5–4.5)
GA at delivery of last pregnancy (weeks) 40.0 (39.5–40.5)

Data are given as median (interquartile range) or n (%). 10th, 10th

percentile; APS, antiphospholipid syndrome; BMI, body mass
index; GA, gestational age; PE, pre-eclampsia; SGA, small-for-
gestational age; SLE, systemic lupus erythematosus.
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Z-score, and, second, by a regression model for the mean
GA at delivery given the mean of birth-weight Z-score.
Therefore, the mean GA at delivery is determined from the
mean of birth-weight Z-score so that, when the mean of
birth-weight Z-score is low, babies tend to be born earlier.
This is reflected in the coefficient of mean birth-weight
Z-score in the GA model (Table 2). Given the effect of
smallness on GA at delivery, the new model quantifies the
simultaneous effect of other variables on GA at delivery
(Table 2).

This joint distribution depicted in a two-dimensional
plane is a contour plot (Figure 1). The center of this
contour plot is defined by the predicted mean birth-weight
Z-score and the predicted mean GA at delivery (Table 2,
Figure 1). Therefore, the coordinates of the contour
plot’s center are governed by maternal characteristics and
medical history. The risk for SGA is given by the volume
under the distribution surface for the region defined by
the chosen birth-weight Z-score and GA cut-offs (Figure 1,
Appendix S1). The lower the predicted mean birth-weight
Z-score and the predicted mean GA, the more the contour
plot falls within the chosen region and the higher the risk
for SGA (Figure 1).

The factors that decreased birth-weight Z-score were
black, South Asian, East Asian and mixed racial
origin, conception by IVF, smoking, PE in the previous
pregnancy, history of stillbirth in the previous pregnancy,
chronic hypertension and systemic lupus erythematosus
and/or antiphospholipid syndrome, whereas being parous
increased birth-weight Z-score (Table 2). The effect on
birth-weight Z-score for categorical variables is shown in
Figure 3. The effect of maternal height was linear whereas
the effect of maternal weight on birth-weight Z-score was
positive and quadratic (Figure 4). Application of fractional
polynomials revealed that interpregnancy interval had a
non-linear effect on birth-weight Z-score with a positive
peak at 2 years (Figure 4). The lower the birth weight
for GA in the last pregnancy and the earlier the GA at
delivery, the lower the birth-weight Z-score in the index
pregnancy (Table 2).

The factors that decreased GA at delivery were
conception by IVF, chronic hypertension, systemic lupus
erythematosus and/or antiphospholipid syndrome, history
of stillbirth and diabetes mellitus, whereas being parous
increased predicted GA at delivery (Table 2). The effect
on GA at delivery for categorical variables is shown

Table 2 Model for joint distribution of birth-weight (BW) Z-score and gestational age at delivery (GA)

Parameter Estimate SD LCL UCL

BW Z-score
Intercept 0.4358 0.0222 0.3923 0.4793
Racial origin

Black −0.5436 0.0241 −0.5909 −0.4963
East Asian −0.0468 0.0603 −0.1650 0.0714
South Asian −0.4902 0.0390 −0.5667 −0.4137
Mixed −0.2533 0.0545 −0.3601 −0.1465

Height (in cm) − 165 0.02789 0.00146 0.0250 0.0308
Weight (in kg) − 69 0.01138 0.00079 0.009832 0.012928
(Weight (in kg) − 69)2 −0.0002005 0.0000216 −0.0002428 −0.0001582
In-vitro fertilization −0.1838 0.0593 −0.2999 −0.0677
Smoker −0.6602 0.0271 −0.7133 −0.6071
Chronic hypertension −0.6267 0.0675 −0.7590 −0.4944
SLE/APS −0.3309 0.1845 −0.6925 0.0307
Parous 0.05933 0.07173 −0.0813 0.1999
Last GA* (in weeks) − 40 0.06155 0.00563 0.0505 0.0726
Previous BW Z-score 0.3665 0.0113 0.3444 0.3886
Interpregnancy interval (in years)−1 −0.6062 0.1179 −0.8373 −0.3751
Interpregnancy interval (in years)−0.5 1.2990 0.1911 0.9244 1.6736
Previous PE −0.1499 0.0513 −0.2505 −0.0493
Previous IUD −0.1589 0.1010 −0.3569 0.0391
SD for BW Z-score 1.3850

GA
Intercept 46.790 0.1863 46.4249 47.1551
Mean BW Z-score 1.680 0.0519 1.5784 1.7816
In-vitro fertilization −1.469 0.3111 −2.0788 −0.8592
Chronic hypertension −1.827 0.3361 −2.4858 −1.1682
SLE/APS −1.929 0.8833 −3.6603 −0.1977
Diabetes mellitus −4.744 0.3832 −5.4951 −3.9929
Previous IUD −1.604 0.4373 −2.4611 −0.7469
Parous 0.339 0.1086 0.1261 0.5519
Last GA* (in weeks) − 40 0.538 0.0271 0.4850 0.5912
SD for GA 6.1865

Correlation 0.3761

Posterior means, SD and lower (LCL) and upper (UCL) credibility limits are shown. *GA at delivery of last pregnancy. APS, antiphospho-
lipid syndrome; IUD, intrauterine death; PE, pre-eclampsia; SLE, systemic lupus erythematosus.
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Figure 3 Forest plot showing effect of maternal factors on mean
birth-weight Z-score. Horizontal bars represent credibility
intervals. APS, antiphospholipid syndrome; IUD, intrauterine
death; IVF, in-vitro fertilization; PE, pre-eclampsia; SLE, systemic
lupus erythematosus.

Maternal weight (kg)

40 60 80 100 120

–1.0

–0.5

0.0

0.5

1.0

–1.5

–1.0

–0.5

0.0

0.5

1.0

1.5

M
ea

n 
B

W
 Z

-s
co

re

Interpregnancy interval (years)

0 5 10 15 20

M
ea

n 
B

W
 Z

-s
co

re

(a) (b)

Figure 4 Non-linear effect of maternal weight (a) and interpregnancy interval (b) on mean birth-weight (BW) Z-score.

in Figure 5. The earlier the GA at delivery in the last
pregnancy, the earlier the predicted GA at delivery.

Model evaluation

The prediction for several SGA definitions and fixed
false-positive rates is presented in Table 3. The prediction
was progressively better for earlier GAs and increasing
severity of SGA and in parous women. The detection
rates were, in the majority of cases, lower in the test
dataset, as expected.

We assessed the agreement between the predicted risks
by the competing-risks model for SGA and the observed

Conception by IVF

Chronic hypertension

SLE/APS

Diabetes mellitus

Parous

Parous with previous IUD

–6 –5 –4 –3 –2 –1 0 1

Mean GA at delivery (weeks)

Figure 5 Forest plot showing effect of maternal factors on mean
gestational age (GA) at delivery. Horizontal bars represent
credibility intervals. APS, antiphospholipid syndrome; IUD, intra-
uterine death; IVF, in-vitro fertilization; SLE, systemic lupus
erythematosus.

incidence for different SGA definitions. The new model
had satisfactory calibration for all the outcomes (Table 4,
Figure 6).

Comparison of performance of new model with logistic
regression models

The predictive performance of the new model for SGA
with birth weight < 10th and < 3rd percentiles for GAs at
birth < 42, < 37, < 34 and < 30 weeks’ gestation, at fixed
false-positive rates, was comparable to that of several
logistic regression models (Table 5). Internal validation
revealed that the new model is more stable with superior
performance for preterm SGA (Table 5).
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Table 3 Performance of new model in prediction of small-for-gestational-age neonate with birth weight (BW) < 10th or < 3rd percentile, for
different gestational-age cut-offs at delivery, in training and test datasets, overall and according to parity

DR (%) at FPR of:

AUC 5% 10% 20%

Outcome measure Training Test Training Test Training Test Training Test

Delivery < 42 weeks
BW < 10th percentile

All pregnancies 0.7185 0.7175 18.4 17.9 30.0 30.1 47.5 48.6
Nulliparous 0.6535 0.6585 13.7 13.8 23.9 24.2 39.4 41.4
Parous 0.7648 0.7559 24.5 23.5 37.5 37.6 57.1 55.6

BW < 3rd percentile
All pregnancies 0.7442 0.7357 21.4 20.5 34.0 33.1 52.3 51.5
Nulliparous 0.6783 0.6751 15.1 15.6 25.8 25.5 43.7 44.3
Parous 0.7936 0.7792 29.8 27.0 43.1 41.7 62.3 58.9

Delivery < 37 weeks
BW < 10th percentile

All pregnancies 0.7324 0.7155 24.0 21.5 33.8 32.1 51.0 48.6
Nulliparous 0.6422 0.6291 13.1 12.8 22.3 21.2 37.9 37.0
Parous 0.7972 0.7717 34.6 30.1 47.1 45.5 64.3 61.0

BW < 3rd percentile
All pregnancies 0.7462 0.7271 25.2 21.9 35.7 32.2 53.0 50.3
Nulliparous 0.6597 0.6370 13.5 12.8 23.1 21.7 40.4 38.3
Parous 0.8091 0.7905 37.1 33.6 50.1 48.2 67.3 62.1

Delivery < 34 weeks
BW < 10th percentile

All pregnancies 0.7398 0.7151 26.1 24.2 36.0 32.2 52.2 49.5
Nulliparous 0.6459 0.6249 12.3 14.0 20.8 20.6 38.8 38.5
Parous 0.8052 0.7742 39.8 35.9 53.6 48.1 65.9 61.2

BW < 3rd percentile
All pregnancies 0.7480 0.7189 25.7 22.8 36.2 30.8 52.8 48.4
Nulliparous 0.6566 0.6212 11.1 14.0 21.2 21.0 40.2 39.0
Parous 0.8155 0.7870 42.2 35.4 54.6 48.3 64.9 61.2

Delivery < 30 weeks
BW < 10th percentile

All pregnancies 0.7325 0.7355 26.2 28.7 35.5 37.8 50.0 53.0
Nulliparous 0.6141 0.6604 9.3 21.0 18.6 26.3 32.6 42.1
Parous 0.8062 0.7827 40.7 40.0 54.7 50.0 67.4 63.3

BW < 3rd percentile
All pregnancies 0.7467 0.7326 28.8 27.9 39.6 38.6 51.1 50.7
Nulliparous 0.6280 0.6504 10.2 19.2 20.3 27.4 33.3 39.7
Parous 0.8240 0.7835 44.3 37.3 58.6 50.8 68.6 61.2

AUC, area under the receiver-operating-characteristics curve; DR, detection rate; FPR, false-positive rate.

Table 4 Calibration study for new model in prediction of small-for-gestational-age neonate with birth weight (BW) < 10th or < 3rd

percentile, for different gestational-age (GA) cut-offs at delivery, in training and test datasets

BW < 10th percentile BW < 3rd percentile

GA at delivery Slope Intercept Slope Intercept

< 42 weeks
Training dataset 0.99573 0.99574 0.97292 0.65287
Test dataset 0.97931 0.98209 0.92914 0.62484

< 37 weeks
Training dataset 0.96260 0.03388 0.91743 0.10603
Test dataset 0.87160 0.00327 0.83798 0.06913

< 34 weeks
Training dataset 0.90030 −0.10263 0.8621 0.05647
Test dataset 0.83078 −0.09771 0.78224 0.05558

< 30 weeks
Training dataset 0.79227 0.39565 0.79904 0.55026
Test dataset 0.7761 0.45864 0.74863 0.54341
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Figure 6 Calibration plot for prediction of small-for-gestational-
age neonate with birth weight < 3rd percentile born < 37 weeks’
gestation. Data are mean risks with confidence intervals. Horizontal
dashed line represents mean observed incidence. Vertical dashed
line represents mean risk predicted by new model.

DISCUSSION

Principal findings

We developed a new model based on maternal char-
acteristics and history which provides estimation of
patient-specific risks for birth of a SGA neonate, in which
GA at the time of delivery and birth-weight Z-score are
treated as continuous variables. All women have a person-
alized joint Gaussian distribution of birth-weight Z-score
and GA at delivery, and maternal risk factors modify
the mean of this distribution. The mean of such a joint
distribution is comprised of two coordinates. The first
coordinate is the predicted mean birth-weight Z-score
and the second coordinate is the predicted mean of GA at
delivery conditional on the predicted mean birth-weight
Z-score. In pregnancies at low risk for SGA, the dis-
tribution is shifted upwards and right towards higher
birth-weight Z-scores and gestational weeks. In high-risk
pregnancies, the model shifts the distribution downwards
and to the left towards lower birth-weight Z-score and
GA values (Figure 1). A single continuous model can be

Table 5 Comparison of screening performance between new model and logistic regression models for small-for-gestational-age neonate with
birth weight (BW) < 10th or < 3rd percentile, for different gestational-age cut-offs at delivery, in training and test datasets

DR (%) at FPR of:

AUC 5% 10% 20%

Outcome measure Training Test Training Test Training Test Training Test

Delivery < 42 weeks
BW < 10th percentile

New model 0.7185 0.7175 18.4 17.9 30.0 30.1 47.5 48.6
Logistic regression 0.7101 0.7193 18.9 18.1 30.4 30.6 47.9 48.5

BW < 3rd percentile
New model 0.7442 0.7357 21.4 20.5 34.0 33.1 52.3 51.5
Logistic regression 0.7423 0.7325 21.1 20.2 33.6 32.5 52.3 50.5

Delivery < 37 weeks
BW < 10th percentile

New model 0.7324 0.7155 24.0 21.5 33.8 32.1 51.0 48.6
Logistic regression 0.7299 0.7158 23.2 21.8 33.3 31.4 50.5 48.5

BW < 3rd percentile
New model 0.7462 0.7271 25.2 21.9 35.7 32.2 53.0 50.3
Logistic regression 0.7497 0.7318 24.6 22.5 36.3 32.7 55.0 51.4

Delivery < 34 weeks
BW < 10th percentile

New model 0.7398 0.7151 26.1 24.2 36.0 32.2 52.2 49.5
Logistic regression 0.7521 0.7256 27.4 22.1 38.3 33.6 55.9 50.6

BW < 3rd percentile
New model 0.7480 0.7189 25.7 22.8 36.2 30.8 52.8 48.4
Logistic regression 0.7512 0.7230 27.2 22.7 41.7 32.3 56.5 49.6

Delivery < 30 weeks
BW < 10th percentile

New model 0.7325 0.7355 26.2 28.7 35.5 37.8 51.2 53.0
Logistic regression 0.7534 0.7205 29.0 23.0 41.9 31.4 55.8 47.0

BW < 3rd percentile
New model 0.7467 0.7326 28.8 27.9 39.6 38.6 51.1 50.7
Logistic regression 0.7677 0.7278 32.3 25.0 45.3 30.2 56.8 45.0

AUC, area under the receiver-operating-characteristics curve; DR, detection rate; FPR, false-positive rate.
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used for any choice of birth-weight Z-score and GA at
delivery cut-offs.

Internal validation, which is actually the clinical
application of the model, revealed that a single unified
equation has better performance compared to a series
of different logistic regression models that were fitted
separately for the different SGA definitions (Table 5). The
new model is more stable, with similar performance in
the training and validation datasets. On the contrary,
the logistic regression approach loses discrimination in
the validation dataset, especially for the preterm cases.
These observations provide support for the argument
that SGA should be treated as a spectrum disorder rather
than being fragmented arbitrarily by different cut-offs
according to birth-weight percentile and GA at delivery.
This study has also demonstrated that the calibration of
the model is good, and this may improve stratification of
pregnancy care based on risk assessment, especially for
high-risk cases for preterm SGA.

Comparison with previous studies

Previous first-trimester studies that aimed to predict
delivery of a SGA neonate reported similar sensitivities
compared to the one achieved by the new model9–12.
However, the predictive performance of the new approach
is actually higher than that of previous models because our
definition of SGA was based on the new Fetal Medicine
Foundation birth-weight charts; these charts modeled
efficiently the over-representation of preterm SGA
pregnancies, and this has led to an increasing percentage
of SGA for lower GA cut-offs18. Thus, we are predicting
an outcome that is less extreme, compared to the previous
definitions, and consequently more difficult to predict9,18.

Implications for clinical practice

The building block of the new model for SGA prediction
is an individualized joint Gaussian distribution that is
defined by maternal characteristics and medical history.
An important functionality of the new approach is the
ability of a clinician to select any desired cut-off in
birth-weight Z-score and GA at delivery. The selected
cut-off for birth-weight Z-score may depend on local
resources. The GA cut-off can be changed several times
during the pregnancy and this flexibility will probably
enhance efficient risk stratification. Such a prior model
augmented by the Bayesian incorporation of biophysical
and biochemical markers will improve prediction of
a SGA fetus and will inevitably lead to improved
future research for preventative therapeutic interventions
and stratification of intensity of pregnancy monitoring.
Ultimately, this may lead to improved perinatal outcome
for fetuses that are growth restricted.

Strengths and limitations

The strengths of this study are, first, the large number of
prospectively examined pregnancies in which maternal

characteristics were recorded and specific questions were
asked to obtain the medical history, as a part of an
implemented screening program, second, application of
a multivariate analysis that best describes the effect of
each predictor, third, use of a joint distribution model
that allows estimation of patient-specific risks for any
desired SGA definition, and, fourth, potential for use of
the model to derive the prior distribution in a Bayesian
update process at different stages of pregnancy.

We have used internal validation to examine the internal
validity of our model. We estimated the discrimination
and calibration of the model, if it is to be trained by a
dataset and then applied to a new dataset. Therefore, we
know what to expect from the model in our population.
A limitation of the study is the lack of external validation;
we cannot demonstrate the applicability of our results in
other populations, and independent data from different
sources are required.

Conclusions

Birth-weight deviation and GA are intimately related;
SGA is defined by its severity and prematurity. These two
important elements can be combined and reflected in a
continuous joint distribution. Such a unified approach
facilitates the understanding and interpretation of these
two important determinants of perinatal outcome. The
same coefficients provide effective screening for any SGA
definition. The new method of screening supports the
hypothesis that SGA is a disease with a continuous severity
spectrum, and arbitrary dichotomization of the condition
should be avoided.

A new efficient clinical tool, with clinical applicability,
has been developed. The new approach provides a
framework in which different desired cut-offs of GA at
delivery and birth-weight Z-score may be used in the
context of the same model. This model will form the basis
for a Bayesian update by various biomarkers at different
stages in pregnancy.
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Modelo de riesgos en competencia para la predicci ón de reci én nacidos pequeños para la edad
gestacional a partir de las caracter ı́ st icas maternas y su historial médico

RESUMEN

Antecedentes El método establecido para identificar a un grupo de mujeres con alto riesgo de dar a luz a un recién nacido de tamaño pequeño
para la edad gestacional (PEG), que requiere una mayor vigilancia, es el uso de sistemas de puntuación de riesgos basados en las caracterı́sticas
demográficas maternas y el historial médico. Aunque este enfoque es relativamente sencillo de aplicar, no detecta riesgos especı́ficos para la
paciente y tiene un rendimiento incierto en la predicción de neonatos PEG. Otro enfoque para predecir el parto de neonatos PEG es utilizar
modelos de regresión logı́stica que combinan factores maternos con biomarcadores del primer trimestre. Estos modelos detectan riesgos especı́ficos
para cada paciente para diferentes lı́mites preestablecidos del percentil de peso al nacer y la edad gestacional (EG) en el momento del parto.

Objetivos En primer lugar, desarrollar un modelo de riesgos en competencia para la predicción de neonatos PEG basado en las caracterı́sticas
demográficas maternas y el historial médico, en el que la EG en el momento del parto y la puntuación Z del peso al nacer se tratan como variables
continuas. En segundo lugar, comparar el comportamiento predictivo del nuevo modelo para neonatos PEG con el de los métodos anteriores.

Métodos Este fue un estudio prospectivo de observación a 124 443 mujeres con embarazos de feto único que se sometieron a una ecografı́a
de rutina entre las 11+0 y las 13+6 semanas de gestación. El conjunto de datos se dividió al azar en un conjunto de datos de entrenamiento
y otro para la prueba. El conjunto de datos de entrenamiento se utilizó para elaborar un modelo para la distribución conjunta de la EG en el
parto y la puntuación Z del peso al nacer a partir de variables de las caracterı́sticas maternas y su historial médico. Esta distribución gaussiana
conjunta especı́fica de la paciente de la EG en el parto, junto con la puntuación Z del peso al nacer, permiten el cálculo del riesgo de un neonato
PEG definido en términos de diferentes percentiles del peso al nacer y la EG. El nuevo modelo fue validado con el conjunto de datos de prueba
para evaluar el desempeño del cribado y se comparó su rendimiento predictivo con el de los modelos de regresión logı́stica para las diferentes
definiciones de PEG.

Resultados En el nuevo modelo, la distribución gaussiana conjunta de la EG en el parto y la puntuación Z del peso al nacer se desplaza a
valores más bajos de puntuación Z del peso al nacer y de la EG en el parto, lo que da lugar a un mayor riesgo de neonatos PEG cuando el peso y la
altura de la madre disminuyen, para las madres de origen negro, de Asia oriental, de Asia meridional y de razas mixtas, con antecedentes médicos
de hipertensión crónica, con diabetes mellitus y lupus eritematoso sistémico y/o sı́ndrome antifosfolipı́dico, con la concepción por fecundación in
vitro y con el tabaquismo. En las mujeres que ya han tenido algún hijo, las variables del último embarazo que aumentaron el riesgo de un neonato
PEG fueron un historial de preeclampsia o el éxitus fetal, la disminución de la puntuación Z del peso al nacer sumada a una menor EG en el
parto del último embarazo, y un intervalo entre embarazos de <0,5 años. En el conjunto de datos de la prueba, con una tasa de falsos positivos
del 10%, el nuevo modelo predijo el 30,1%, 32,1%, 32,2% y 37,8% de los casos de neonatos PEG con un peso al nacer <10o percentil para
partos a <42, <37, <34 y <30 semanas de gestación, respectivamente, que fueron similares o más altos que los valores respectivos logrados por
una serie de modelos de regresión logı́stica. El estudio de calibración demostró una buena concordancia entre los riesgos previstos y la incidencia
observada de neonatos PEG tanto en el conjunto de datos de entrenamiento como en el de la prueba.

Conclusiones Un nuevo modelo de riesgos en competencia, basado en las caracterı́sticas maternas y el historial clı́nico, proporciona una
estimación de los riesgos especı́ficos de cada paciente de un neonato PEG en el que la EG en el momento del parto y la puntuación Z del peso al
nacer se tratan como variables continuas. Esa estimación del riesgo a priori para neonatos PEG es un primer paso esencial en el uso del teorema
de Bayes para combinar los factores maternos con los biomarcadores a fin de seguir desarrollando métodos más eficaces de detección de neonatos
PEG.
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