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Abstract
Objective: To define the lipidomic profile in plasma across pregnancy, and identify 
lipid biomarkers for gestational diabetes mellitus (GDM) prediction in early pregnancy.
Design: Case–control study.
Setting: Tertiary referral maternity unit.
Population or Sample: Plasma samples from 100 GDM and 100 normal glucose 
tolerance (NGT) women, divided into a training set (GDM first trimester = 50, 
GDM second trimester  =  40, NGT first trimester  =  50, NGT second trimes-
ter  =  50) and a validation set (GDM first trimester  =  45, GDM second trimes-
ter = 34, NGT first trimester = 44, NGT second trimester = 40).
Methods: Plasma samples were collected in the first (11+0 to 13+6 weeks), second 
(19+0 to 24+6 weeks), and third trimesters (30+0 to 34+6 weeks), and tested by ultra-
high-performance liquid chromatography coupled with electrospray ionisation-
quadrupole-time of flight-mass spectrometry; The GDM prediction model was 
established by the machine-learning method of random forest.
Main outcome measures: Gestational diabetes mellitus.
Results: In both the GDM and NGT group, lyso-glycerophospholipids were down-
regulated, whereas ceramides, sphingomyelins, cholesteryl ester, diacylglycerols 
(DGs) and triacylglycerols (TGs) and glucosylceramide were up-regulated across 
the three trimesters of pregnancy. In the training dataset, seven TGs and five DGs 
demonstrated good performance in the prediction of GDM in the first and second 
trimesters (area under the curve [AUC] = 0.96 with 95% confidence interval [CI] of 
0.93–1 and AUC = 0.97 with 95% CI of 0.95–1, respectively), independent of maternal 
body mass index (BMI) and ethnicity. In the validation dataset, the predictive model 
achieved an AUC of 0.88 and 0.94 at the first and second trimesters, respectively.
Conclusions: Our results have proposed new lipid biomarkers for the first trimester 
prediction of GDM, independent of ethnicity and BMI.
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1  |   I N TRODUC TION

Gestational diabetes mellitus (GDM) complicates 5%–25% 
of pregnancies, depending on the populations, methods of 
screening and glucose threshold values that define the disor-
der.1,2 GDM is a major cause of perinatal adverse outcomes 
including fetal macrosomia, shoulder dystocia and neonatal 
hypoglycaemia.3 GDM also increases the risks of maternal 
adverse outcomes including the need of caesarean delivery, 
birth trauma and long-term disorders of glucose metab-
olism.4 Appropriate treatment of GDM has been shown to 
improve maternal, obstetric and perinatal outcomes but the 
risks for long-term cardiovascular and metabolic adverse 
outcomes remain high in women affected by GDM and their 
offspring.4,5 For women with a history of prior GDM, it is 
recommended that early testing for GDM be undertaken at 
the first prenatal visit or before 24 weeks in future pregnan-
cies.6 However, in most circumstances, current guidelines 
recommend testing for GDM in the late second and early 
third trimesters of pregnancy, leaving a narrow window 
for interventions.6,7 It would be desirable to predict GDM 
in early pregnancy, ideally during the first trimester when 
women attend for their 11- to 13-week scan for screening of 
fetal aneuploidies and preterm pre-eclampsia.8,9 A number 
of first trimester biochemical predictors of GDM have been 
reported; however, the studies have mostly used a case–
control design with small sample sizes.10 The accuracy and 
reproducibility of these predictors have not been widely con-
firmed in independent cohorts, thus limiting the applica-
bility in clinical practice.11,12 To date, no predictor has been 
universally recommended for early GDM screening.

Metabolomics is a powerful technology for the discovery 
of early diagnostic biomarkers, owing to its capacity for de-
tecting early dysregulations and disruptions in metabolism 
associated with metabolic diseases.13 Previous studies have 
already used metabolomics approaches to investigate the 
changes of metabolites in GDM patients. However, most of 
these studies had a small sample size and focused on detect-
ing polar metabolites such as amino acids, nitrogenous bases, 
hormones and their intermediate by-products.14 In contrast, 
there are a limited number of lipidomics studies focusing on 
detecting non-polar metabolites. In addition, the findings of 
previous metabolomics studies that have attempted to iden-
tify biomarkers for diagnosing GDM have been inconsistent, 
and clinically useful biomarkers for GDM prediction with 
high accuracy are still waiting to be discovered.15

Lipids are a diverse group of non-polar chemicals, which 
have key biological functions of cell membrane composition, 
energy storage and cellular signal regulation and dysregu-
lation of lipids has been observed in metabolic diseases.16 
Lipid homeostasis plays a crucial role in the pathophys-
iology of type 2 diabetes. Hyperlipidaemia is a recognised 
physiological finding in pregnancy. In women with GDM, 
the physiological changes in lipids are amplified and may 
indicate an underlying metabolic disturbance during preg-
nancy.17 In this study, we used lipidomics technologies with 
a high coverage of lipid species to define the profile changes 

across the three trimesters in pregnant women with GDM 
and those with normal glucose tolerance (NGT). We aimed 
to identify a panel of lipid biomarkers for GDM prediction 
in early pregnancy.

2  |   M ETHODS

2.1  |  Recruitment of participants

The participants of this study were originally recruited to 
a large prospective observational study for early prediction 
of pregnancy complications in women attending for their 
routine first hospital visit in pregnancy at King's College 
Hospital, London, UK.18 In the first visit, at 11+0–13+6 weeks' 
gestation, maternal characteristics and medical history were 
recorded and combined screening for aneuploidies was 
performed. The second visit, at 19+0–24+6 weeks' gestation, 
and third visit, at 30+0– 34+6 weeks' gestation, included ul-
trasound examination of the fetal anatomy and estimation 
of fetal size from measurement of fetal head circumference, 
abdominal circumference and femur length.19 At each visit, 
maternal blood was collected in ethylene diamine tetra-acetic 
acid (EDTA) blood collection tubes and maternal plasma 
was extracted and stored at −80°C for research purposes. 
Gestational age was determined by the measurement of fetal 
crown–rump length at 11–13 weeks' gestation.20 Written in-
formed consent was obtained from the women agreeing to 
participate in a study on adverse pregnancy outcome, which 
was approved by the hospital Ethics Committee. All women 
were screened for GDM at King's College Hospital, London, 
UK, based on a two-step approach. Random plasma glucose 
was measured at 24–28 weeks' gestation and if the concentra-
tion was >6.7 mmol/L an oral glucose tolerance test (OGTT) 
was carried out within the subsequent 2 weeks. The diag-
nosis of GDM is made if the fasting plasma glucose level is 
≥6 mmol/L or the plasma glucose level 2 hours after the oral 
administration of 75 g glucose is ≥7.8 mmol/L.21,22 In this 
study, we retrospectively retrieved the archived plasma sam-
ples of 100 singleton pregnancies with GDM and 100 single-
ton pregnancies with NGT for lipidomics profiling analysis 
based on matched sampling time (on the same day).

2.2  |  Lipid extraction and untargeted 
lipidomic profiling

Lipid extraction was performed according to standard-
ised methodology reported previously.23,24 In short, the 
plasma samples (40 microlitres each) that were previ-
ously stored at −80°C were placed on ice and mixed with 
3 volumes of precooled (−20°C) isopropanol. Samples were 
vortex-mixed for 1 minute. After 10 minute of incubation 
at room temperature, samples were stored overnight at 
−20°C to improve protein precipitation and then centri-
fuged at 14 000 g for 20 min. The supernatant was collected 
(100 microlitres) and diluted with 400 microlitres of IPA/
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ACN/H2O (2:1:1 v:v:v) and stored at −80°C awaiting MS 
analysis.

Ultra-high-performance liquid chromatography coupled 
with electrospray ionisation-quadrupole-time of flight-mass 
spectrometry (G2-XS QTOF; Waters) was used for untar-
geted lipidomic profiling. The LC–MS parameter setting 
was similar to that previously reported.24 Briefly, lipid mole-
cules were separated with a CSH C18 column (2.1 × 100 mm, 
1.7 micrometers; Waters) in a 10-minute LC gradient and de-
tected with a XEVO-G2XS QTOF mass spectrometer in pos-
itive and negative mode, which was operated in MSE mode 
from m/z 50–2000, with an acquisition time of 1 second per 
scan. Leucine encephalin was used as a lock mass for accu-
rate mass measurements and 0.5-mm sodium formate solu-
tion was used for calibration.

Pooled plasma was used as quality control (QC) and 
injected in every ten injections for QC.25,26 Identification 
was performed by PROGENESIS QI software searching 
the Human Metabolome Database (HMDB, http://www.
hmdb.ca/)27 and Lipidmaps28 databases with accurate mass 
(<10 ppm) and MS/MS spectrum match. Data preprocessing 
and analysis were performed using the metaX package.29 
The QC-based robust locally estimated scatterplot smooth-
ing signal correction30,31 method was applied to correct 
batch variation. Features with a coefficient of variation of 
more than 30% in QC samples were excluded.27

2.3  |  Statistical analysis

To reveal the hidden structure in lipidomics over time, soft 
clustering was provided based on fuzzy c-means algorithm 
implemented in the R package Mfuzz.32 The optimised num-
ber of clusters was estimated by calculating minimum cen-
troid distance. A machine-learning method, random forest 
(RF), was applied to identify features that could discriminate 
the GDM and NGT pregnant women, and the gestational 
change using the Caret package.33 ROC curve analysis was 
used to assess the ability of a combination of identified lipid 
species in predicting GDM. Statistical analyses were per-
formed by R language using packages including ggplot2,34 
and Two-way analysis of variance (ANOVA2) was processed 
by the two-factor analysis module in MetaboAnalyst.35 
Each lipid class was examined for the association with lipid 
changes in GDM using linear models adjusted for body mass 
index (BMI), ethnicity and maternal age. Associations with 
lipid change in BMI were adjusted for GDM, ethnicity and 
maternal age. The p-values were corrected for multiple com-
parisons using the Benjamini–Hochberg procedure.

2.4  |  GDM-related lipid identification using 
MS/MS fragmentation

The RF-selected features were further identified by targeted 
fragmentation and the MS/MS spectrum was manually 
checked under the guidelines of the Lipidomics Standards 

Initiative (LSI; https://lipid​omics​-stand​ards-initi​ative.org/). 
All representative matched MS/MS spectra are shown in 
Figure S2.

3  |   R E SU LTS

3.1  |  Study design and data QC

Maternal characteristics of the study population are shown 
in Table  1. In the GDM group, compared with the NGT 
group, the mean maternal age and BMI were higher and there 
was a higher proportion of non-white women. Additionally, 
the GDM group, compared with the NGT group, delivered 
earlier and their neonates had a lower birthweight, which is 
consistent with previous reports.36,37

All plasma samples from GDM and NGT subjects in 
the three trimesters of pregnancy were quantified using 
lipid profiling technologies to evaluate the systematic lipid 
variation related with pregnancy, GDM and racial origin 
(Figure 1A). After removing sample outliers, there were 268 
GDM subjects (corresponding to 95, 74 and 99 GDM sam-
ples in the first, second and third trimesters, respectively) 
and 280 NGT subjects (corresponding to 94, 90 and 96 NGT 
samples in the first, second and third trimesters, respec-
tively) whose samples could be used for further analysis. For 
GDM biomarker analysis, samples were divided into train-
ing dataset and validation dataset (Figure 1B). Potential bio-
markers discovered in the training dataset were quantified 

T A B L E  1   Characteristics of study population

GDM 
(n = 100)

NGT 
(n = 100) p-value

Maternal age in years, 
mean ± SD

33.2 ± 5.1 31.3 ± 6.0 0.016*

Body mass index in 
kg/m2, mean ± SD

30.2 ± 7.3 25.3 ± 5.4 <0.0001*

Gestational age in 
weeks, mean ± SD

12.6 ± 0.5 12.6 ± 0.5 0.555

Crown-rump length 
in mm, mean ± SD

62.1 ± 7.3 62.7 ± 7.3 0.555

Racial origin

White, n (%) 37 (37.0) 63 (63.0) 0.001*

Afro-Caribbean, 
n (%)

36 (36.0) 29 (29.0)

South Asian, n (%) 17 (17.0) 2 (2.0)

East Asian, n (%) 8 (8.0) 4 (4.0)

Mixed, n (%) 2 (2.0) 2 (2.0)

Gestational age at 
delivery in weeks, 
mean ± SD

38.3 ± 1.4 39.8 ± 0.8 <0.0001*

Birthweight in grams, 
mean ± SD

3159.5 ± 516.4 3349.5 ± 270.5 0.001*

Note: Comparisons using Student's t-test or chi-square test.
Abbreviations: GDM, Gestational diabetes mellitus; SD, standard deviation.
*p  < 0.05.
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and subsequently evaluated for GDM prediction in the val-
idation dataset. The principal component analysis showed 
that all QC samples that spiked at certain intervals clustered 
together, verifying an acceptable reproducibility and stabil-
ity of the results (Figure S1).

3.2  |  Lipid changes across the first, 
second and third trimesters

For plasma collected from the three trimesters, untar-
geted lipidomics profiling quantified 963 lipids by MS1 
level identification, including 12 cholesteryl ester (CEs), 
32 ceramides (Cers), 72 diacylglycerols (DGs), 13 gluco-
sylceramide (GlcCers), 11 lactosylceramide (LacCers), 
20 lyso-phosphatidylcholines (Lyso-PCs), 17 lyso-
phosphatidylethanolamines (Lyso-PEs), 13 phosphatidic 
acids (PAs), 233 phosphatidylcholines (PCs), 153 phosphati-
dylethanolamines (PEs), 67 phosphatidylglycerols (PGs), 43 
phosphoinositols (PIs), 32 phosphoserines (PSs), 25 sphingo-
myelins (SMs) and 220 triacylglycerols (TGs).

In NGT pregnant women, time-clustering analysis 
identified six expression clusters for all profiled lipids. 
Lipids in clusters 1 and 3 were up-regulated throughout 
pregnancy, whereas lipids in clusters 5 and 6 were down-
regulated throughout pregnancy. Lipids in cluster 4 had 
the maximum expression in the second trimester, whereas 

lipids in cluster 2 had the minimum expression in the sec-
ond trimester (Figure 2A). As deciphered by the heatmap 
of the percentages for each lipid species in Figure 2B, the 
abundance of lyso-glycerophospholipids, including Lyso-
PCs, Lyso-PEs and LacCers were downregulated, whereas 
Cers, SMs, CEs, DGs and TGs and GlcCers were enriched 
in the up-regulating clusters across the three trimesters of 
pregnancy.

3.3  |  Potential lipid biomarkers to 
differentiate GDM from NGT groups

Fold-change comparison of lipid abundance between the 
GDM and NGT groups throughout pregnancy demon-
strated significant differences with an adjusted p-value of 
<0.05 (Figure 3A). In particular, at the first, second and third 
trimesters of pregnancy, 54.7, 15.1 and 20.8% of DG species 
had o average a 1.32- (1.14–1.68), 1.31- (1.15–1.57) and 1.13-
fold (0.7–1.43) higher expression in the GDM group than in 
the NGT group, respectively. On the other hand, 25.1% and 
12.0% of TG species that had on average a 1.21- (0.66–1.88) 
and 1.13-fold (0.7–1.44) higher expression in the first and 
second trimester in the GDM group than in the NGT group, 
respectively. The medium expression level of DGs, FAs and 
PEs in the GDM group was constantly higher than that in 
the NGT group. In contrast, the medium expression level 

F I G U R E  1   Study design using lipid profiling of plasma in gestational diabetes mellitus (GDM) and normal glucose tolerance (NGT) subjects. (A) 
Study design of GDM related lipid profiling. (B) Selection and validation of lipid signatures in the training and validation datasets.
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of PCs, PGs, PIs and PSs in the GDM group was constantly 
lower than that in the NGT group.

To explore potential lipids related to GDM in the first 
trimester of pregnancy, all lipid profiling data were divided 
into two datasets (Figure 1B), In the training dataset (first 
trimester GDM  =  50, second trimester GDM  =  40, first 
trimester NGT  =  50, and second trimester NGT  =  50), all 
differential lipids (p-value <0.05) were used for biomarker 
selection using RF analysis. There were 12 lipid signatures 
with significant expression differences across each trimester 
of pregnancy between the NGT and GDM groups, including 
five DGs and seven TGs. Targeted MS/MS fragmentation was 
used for further identification (Figure  S2). Seven lipid sig-
natures (DG[16:0_18:1], TG[16:0_16:1_18:1], DG[18:0_16:1], 
TG[16:0_16:1_20:1], DG[32:0], TG[16:0_16:0_18:1] and 
DG[O-34:1]) showed increased expression across each tri-
mester of pregnancy, and were more highly expressed in the 
GDM than in the NGT group (Figure  3B). Four lipid sig-
natures (DG[34:0], TG[16:0_18:0_18:1], TG[18:1_18:1_22:6] 
and TG[16:1_20:2_22:1]) showed a higher expression in the 
GDM than in the NGT group, although their expression de-
creased followed the increase in gestational age. One lipid 

signature (TG[18:2_18:2_22:6]) showed decreased expres-
sion across each trimester and had lower expression in the 
GDM than in the NGT group. For the prediction of GDM, re-
ceiver operating characteristic (ROC) of the combination of 
these 12 lipid signatures yielded area under the ROC curves 
(AUCs) of 0.96 (95% CI 0.93–1) and 0.97 (95% CI 0.95–1) in 
the first and second trimesters of pregnancy, respectively, 
which were significantly higher than other respective val-
ues (Figure 3C). Linear regression analysis was performed to 
clarify the correlation of the 12 identified lipids with mater-
nal BMI and age (Figure S3); the level of correlation coeffi-
cient was very low (R2 < 0.2). Thus, the prominent expression 
differences of the 12 lipids in GDM women were not con-
founded by maternal BMI or age. To validate the predictive 
performance of these 12 lipid signatures in plasma selected 
as potential indicators to predict GDM, their abundances in 
the GDM (first trimester: 45 and second trimester: 34) and 
NGT (first trimester: 44 and second trimester: 40) subjects 
from the validation dataset were explored (Figure 1B). The 
AUC could reach 0.88 with 95% CI (0.80–0.95) and 0.94 with 
95% CI (0.89–0.99) using these 12 molecules in the first and 
second trimesters (Figure 3C).

F I G U R E  2   Temporal clustering of lipids in normal glucose tolerance (NGT) pregnant women across three trimesters. (A) Temporal clustering of 
lipids quantified in NGT pregnant women across the three trimesters (First: 11–13 weeks; second: 20–24 weeks; third: 30–34 weeks). (B) Heatmap of 
percentage for lipid classes enriched in the six clusters.
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3.4  |  Characterising lipids related to BMI, 
ethnicity and maternal age

Considering that GDM is associated with BMI, maternal 
age and ethnicity, we systematically evaluated the differ-
ence of lipid abundance mainly affected by these variables. 
SMs were significantly associated with BMI adjusted for 

GDM, ethnicity and maternal age (Figure 4A). Lipid classes 
including Lyso-PC, PA, PC, PS and TG were significantly 
associated with ethnicity adjusted for GDM, BMI and ma-
ternal age (Figure  4B). No lipids were significantly associ-
ated with maternal age adjusted for GDM, BMI and ethinity 
(Figure 4C). Amongst the above 12 lipid markers, most were 
associated with GDM, with the exception of DG (18:0_16:1) 

F I G U R E  3   Evaluation of the 12 distinct lipid species selected to differentiate gestational diabetes mellitus (GDM) and normal glucose tolerance 
(NGT) groups. (A) Boxplot of differential lipid classes distribution for GDM versus NGT across three trimesters of pregnancy. (B) Boxplot showed the 
expression abundance (peak area of the corresponding peak area quantified by LC–MS) with different groups (two trimesters in NGT group, including 
NGT-1st, NGT-2nd and in GDM groups, including GDM-1st and GDM-2nd). Receiver operating characteristic (ROC) curves of the combination of 12 
lipid markers at the first (red curve) and second (blue curve) trimesters of pregnancy in the training dataset (C) and validation dataset (D).
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and TG (18:2_18:2_22:6), when adjusted for BMI, ethnicity 
and maternal age (Figure 4D). The combination of these 12 
lipid markers with BMI and ethnicity could predict GDM 
and NGT in the first and second trimesters with an AUC of 
0.89 and 0.92, indicating that these lipid markers could be 
potential signatures for GDM prediction in the early stage 
of pregnancy.

4  |   DISCUSSION

The study has demonstrated that, first, in both the NGT 
and GDM groups, the expression levels of Cers, CEs, 
SMs, PAs, PCs, PEs, PGs and PSs increase with increas-
ing gestation, whereas Lyso-PCs and Lyso-PEs decrease 
with increasing gestation. Secondly, 12 lipid species with 
the most prominent expression differences could be used 

as potential discriminators for the prediction of GDM in 
early pregnancy, achieving high AUCs in the first and sec-
ond trimesters of pregnancy. Finally, lipid profiling during 
pregnancy is significantly inf luenced by maternal racial 
origin.

It is known that major changes of lipid metabolism occur 
during pregnancy, leading to an increase in lipid synthesis 
and adipose tissue mass at the initial stage of pregnancy, as 
well as maternal hyperlipidaemia at the later stage of preg-
nancy.38–40 In this study, major lipid classes have demon-
strated consistent profile changes with increasing gestation 
in both the NGT and GDM groups. In addition to the ges-
tational impact on lipid metabolism, we have identified a 
subset of lipid species showing significant expression dif-
ferences between the NGT pregnancies and women with 
GDM. In particular, the expression of TGs and DGs was sig-
nificantly higher in women with GDM than NGT women, 

F I G U R E  4   Phenotype-dependent associations of lipid classes/subclasses with maternal BMI, ethnicity and maternal age. Adjusted β-coefficient 
with 95% CI of lipid classes regressed on level of BMI group with adjusting gestational diabetes mellitus (GDM), ethnicity and maternal age (A), ethnicity 
group with adjusting GDM, BMI and maternal age (B), maternal age group with adjusting GDM, BMI and ethnicity (C) and GDM group with adjusting 
BMI, ethnicity and maternal age (D). Red solid circles show the association was significantly (corrected p < 0.05). Open circles represent nonsignificant 
classes (corrected p > 0.05). BMI, body mass index; CE, cholesteryl ester; Cer, ceramide; DG, diacylglycerol; LPC, lysoalkenylphosphatidylcholine; LPE, 
lyso-phosphatidylethanolamines; PC, phosphatidylcholine; PE, phosphatidylethanolamine; PG, phosphatidylglycerol; PI, phosphatidylinositol; PS, 
phosphatidylserine; SM, sphingomyelin; TG, triacylglycerol.
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especially in early pregnancy. We have shown that the ex-
pression changes of five DG and seven TG signatures could 
be used to predict GDM in the first and second trimesters 
of pregnancy (AUC 0.9644 with 95% CI 0.9283–1, and AUC 
0.9735 with 95% CI 0.9469–1), respectively. Lu et al. have re-
ported the use of an unbiased lipidomics approach to iden-
tify four serum lipid biomarkers, including TGs and PCs, to 
predict GDM in the second trimester, achieving an AUC of 
0.71.40 Liu et al. have analysed serum metabolites of GDM 
women and healthy controls in late third trimester using an 
UPLC/Q-TOF-MS-based approach, and have identified nine 
metabolites, including glucosamine, 1-methyladenosine, 
l-tyrosine and others, for the prediction of GDM, achieving 
an AUC of 0.7.25 Our lipid biomarkers have achieved a higher 
predictive power than previous studies. Hence, our 12 lipid 
signatures may serve as potential predictors for GDM before 
the manifestation of the disorder. However, the methodol-
ogy used to measure the potential lipid predictors of GDM 
is more expensive than testing haemoglobin A1C (HbA1C) 
and OGTT in clinical practice. Other than prospective vali-
dation, there will be a need to develop a targeted approach to 
measure the lipid predictors for affordable GDM screening 
in early pregnancy.

The hyperglycaemia of GDM is associated with impaired 
glucose tolerance due to pancreatic β-cell dysfunction on a 
background of chronic insulin resistance. We found that in 
women with GDM, six TG species had elevated expression 
and one TG species had reduced expression throughout preg-
nancy. Previously, increased TG levels in the plasma of GDM 
women compared with NGT women has also been reported, 
closely correlated with plasma glucose and insulin concen-
trations.41,42 The reason for the elevated TG expression in 
GDM is believed to be related to lipoprotein lipase deficiency 
as a result of an increase in fat intake, in addition to worsen-
ing insulin resistance.41 However, most previous studies have 
only quantified the total TG level using enzymatic assays in-
stead of assessing the expression level of individual TG sig-
natures. Using fold-change analysis of different TG species, 
we have found that not all, but only a proportion (25.1 and 
12.0% in the first and second trimesters) of TG lipids have 
an elevated expression in GDM women. Furthermore, we 
have shown that instead of increased expression, at least one 
TG signature has a significantly reduced expression in GDM 
pregnancy. Thus, it is possible that only a subset of total TGs 
has altered expression related to the development of GDM, 
and the total TG level measured by conventional enzymatic 
assays may not have sufficient discriminatory power in pre-
dicting GDM.

As one of the best-studied mediators of lipid-induced 
insulin resistance, DGs are well-known for their poten-
tial mechanistic roles in hepatic insulin resistance.43 
Our results have confirmed the important role of DGs in 
the development of GDM. DGs are key intermediates in 
maintaining intracellular TG balance by acyltransferases 
or phosphohydrolases.44 In type 2 diabetes mellitus, in-
creased levels of DGs have been linked to impaired protein 
kinase C activation and insulin signalling.45–47 In normal 

liver, mature human insulin receptor B isoform (INSR 
Thr1160) does not interfere with insulin receptor kinase 
(IRK) activation, and downstream signalling proceeds 
normally upon insulin binding. In nonalcoholic fatty liver 
disease, DGs accumulation promotes membrane trans-
location of protein kinase C epsilon type, which in turn 
phosphorylates INSR Thr1160 to impair IRK activity and 
thereby induces hepatic insulin resistance.48 Genetically 
modified mouse models have been generated to examine 
the DGs hypothesis of lipid-induced hepatic insulin resis-
tance. Mice with loss-of-function of mitochondrial acyl-
CoA:glycerol-sn-3-phosphate acyltransferase, a major 
hepatic glycerol-3-phosphate acyltransferase, accumulate 
less intrahepatic DGs and TGs than controls on high-fat 
feeding, associated with protection from hepatic insu-
lin resistance.49 Recently, two separate lipidomics stud-
ies have demonstrated that GDM is associated with the 
elevation of TGs and DGs in the third trimester, as well 
as many other lipids; though no lipid markers have been 
evaluated for the prediction of GDM.50,51

There are recognised racial/ethnic differences in the 
prevalence of GDM. Women with normal BMI of African, 
Caribbean and South Asian racial origins are at a higher risk 
of developing GDM, in comparison with white women.52 In 
this study, we have shown that racial origin is a major fac-
tor that influences lipid expression. Interestingly, a meta-
analysis of maternal lipid levels during pregnancy has 
demonstrated that in comparison with NGT women, women 
with GDM in the USA tend to have reduced levels of total 
cholesterol and low-density lipoprotein cholesterol (LDLC), 
and increased levels of non-LDLC, whereas women with 
GDM in other countries tend to show no altered levels of lip-
ids.41 Our results suggest that racial origin should be consid-
ered when identifying biomarkers, especially metabolomic 
markers, for the prediction of GDM in early pregnancy in an 
unselected population.

The strengths of this study include the well-defined 
diagnosis of GDM in a prospective population with lon-
gitudinal maternal plasma samples collected in all three 
trimesters of pregnancy. This study also benefits from a 
relatively large sample size of GDM cases, compared with 
previous metabolomics studies, and appropriately identi-
fied NGT controls.

There are several limitations to our study. First, al-
though we validated our candidate lipid biomarkers using 
a predefined subset, these biomarkers were not externally 
validated in large cohorts. Secondly, biochemical results of 
HbA1C, total TGs and high-density lipoprotein cholesterol 
were not acquired by additional testing due to the limited 
sample volume, or by clinical records as they are not rou-
tinely measured as part of antenatal care. Thus, association 
analysis of the lipidomics discovery in this study with bio-
chemical results could not be performed. Thirdly, we only 
selected 12 lipid features for univariate analysis, which 
might have been an overly conservative approach. Lastly, the 
efficacy of our prediction model may be overestimated due 
to the case–control study design.
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5  |   CONCLUSIONS

There are prominent changes in lipid metabolism across 
the three trimesters of pregnancy associated with the up-
regulation of Cers, CEs, SMs, PAs, PCs, PEs, PGs and PSs, and 
the down-regulation of Lyso-PCs and Lyso-PEs. We have dem-
onstrated that the development of GDM is associated with an 
altered expression of a subset of TGs and DGs, instead of total 
TGs and DGs. The involvement of this subset of TGs and DGs 
in the development of GDM is independent of maternal BMI 
and racial origin, suggesting their potential role in the predic-
tion of GDM in the first and second trimesters of pregnancy.
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