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Early Detection of Preeclampsia 
Using Circulating Small non-coding 
RNA
Liron Yoffe  1, Avital Gilam1, Orly Yaron1, Avital Polsky1, Luba Farberov1, Argyro Syngelaki2, 
Kypros Nicolaides2, Moshe Hod1,3 & Noam Shomron1

Preeclampsia is one of the most dangerous pregnancy complications, and the leading cause of 
maternal and perinatal mortality and morbidity. Although the clinical symptoms appear late, its 
origin is early, and hence detection is feasible already at the first trimester. In the current study, we 
investigated the abundance of circulating small non-coding RNAs in the plasma of pregnant women 
in their first trimester, seeking transcripts that best separate the preeclampsia samples from those 
of healthy pregnant women. To this end, we performed small non-coding RNAs sequencing of 75 
preeclampsia and control samples, and identified 25 transcripts that were differentially expressed 
between preeclampsia and the control groups. Furthermore, we utilized those transcripts and created 
a pipeline for a supervised classification of preeclampsia. Our pipeline generates a logistic regression 
model using a 5-fold cross validation on numerous random partitions into training and blind test sets. 
Using this classification procedure, we achieved an average AUC value of 0.86. These findings suggest 
the predictive value of circulating small non-coding RNA in the first trimester, warranting further 
examination, and lay the foundation for producing a novel early non-invasive diagnostic tool for 
preeclampsia, which could reduce the life-threatening risk for both the mother and fetus.

Preeclampsia (PE) is one of the most dangerous pregnancy complications, affecting 3–8% of pregnancies; it is the 
leading cause of maternal and perinatal mortality and morbidity1,2. It occurs in the second or third trimester, and 
is characterized by de-novo development of concurrent hypertension with either proteinuria or at least one severe 
feature (thrombocytopenia, renal insufficiency, impaired liver function, pulmonary edema, cerebral or visual 
symptoms) after gestational week 203. PE is called “the disease of theories” reflecting the lack of understanding of 
its pathogenesis. Several pathophysiological mechanisms have been proposed in the development of PE, includ-
ing endothelial dysfunction4, an inflammatory pathway5, oxidative stress6, and angiogenic factors disregulation7; 
though it still remains poorly understood8. It is commonly accepted that the placenta has a central role in the 
pathogenesis of PE, and it is assumed that PE originates from poor placentation, which involves inadequate blood 
supply to the placenta leading to hypoxic environment9–11. Therefore, although the cause of PE is yet clear, its ori-
gin is early and hence detection is feasible already at weeks 10–1412,13. In a recently published study, it was found 
that the administration of aspirin from 11 to 14 weeks of gestation resulted in a lower incidence of PE than that 
with placebo14. Furthermore, Rogerge et al. found that The effect of low-dose aspirin for the prevention of PE is 
optimal only when initiated before or at 16 weeks of gestation15. Henceforth, a reliable test that will detect an ele-
vated risk for developing PE at an early stage of the pregnancy, before gestational week 16, is vital. Over the years, 
numerous studies have been attempted to define biomarkers and therapeutic targets for PE diagnosis and treat-
ment. A number of maternal characteristics have been recognized as risk factors for developing PE, among them 
ethnicity, age, parity, multiple pregnancy, and a history of PE in earlier pregnancies16–18. Additionally, a few poten-
tial biochemical markers were found for predicting and diagnosing PE, including angiogenic/anti-angiogenic 
factors such as soluble fms-like tyrosine kinase 1 (sFlt-1), placental growth factor (PlGF), and vascular endothelial 
growth factor (VEGF)19–21. Other potential biochemical biomarkers include placental proteins, free fetal hemo-
globin (HbF), and kidney markers16. Furthermore, some potential mRNA markers for PE were found in mater-
nal plasma, among them antiangiogenic genes (such as FLT1 and endoglin), hypoxia-inducible factors (such as 
hif1α) and corticotropin-releasing hormone22–24. Currently, no such markers was proven consistently, or have 
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been implemented in clinical practice, consequently new and better biomarkers for PE early prediction are most 
needed.

Small non-coding RNAs (ncRNAs) are a diverse family of untranslated RNA molecules (<200 nucleotides) 
that is part of the transcribed genomic output25,26. The most common known small ncRNAs are microRNAs 
(miRNAs), which are ~22 nucleotides long RNA molecules that regulate gene expression by facilitating mRNA 
degradation or by inhibiting protein translation27. Other small ncRNAs include: Small nucleolar RNA (snoRNA), 
which modulate the biogenesis and activity of ribosomes by post-transcriptional modifications of ribosomal 
RNA (rRNA)28,29; Small nuclear RNA (snRNA), which facilitates mRNA splicing and regulate transcription ini-
tiation30,31; and Transfer RNA (tRNA) - the most abundant small ncRNA - which play a role in translation32. The 
role of small ncRNAs in human diseases has been investigated mainly in the context of gene expression regulation 
via miRNAs, and has been well studied in several conditions including neurogenesis33, diabetes34, and especially 
cancer35–38. Nevertheless, recent studies have shown that dysregulation of many other types of small ncRNAs, 
besides miRNAs, have functional relevance in cancer as well as in most human diseases, from neurological disor-
ders to cardiovascular problems39,40. These emerging studies strengthen the assumption that small ncRNAs have a 
much larger role in human disease etiology than previously understood. In PE, just as in other diseases, miRNAs 
have been the first ncRNAs for which involvement has been investigated. Current accepted theory claims that PE 
begins with abnormal placentation that leads to a maternal inflammatory response41. MiRNAs have important 
roles in both the placentation process42, and in the regulation of uterine inflammatory response43,44. MiRNAs are 
also related to many other mechanisms associated to PE pathogenesis including angiogenesis45–48, hypoxia49,50, 
regulation of blood pressure51 and cell differentiation, apoptosis, and migration/remodeling46,52–55. Moreover, 
in recent years, abundant and differentially expressed miRNA species in placental samples from PE and control 
samples have been reported46,56–59, which opened up the possibility to find new effective markers for the diagnosis 
of PE60. Additionally, circulating miRNAs in maternal blood, which are associated with preeclamptic risk, were 
identified, thought they were found in in the second or third trimester, after the appearance of PE symptoms61–66. 
Currently no such markers have been found for an early diagnosis prior to the appearance of symptoms. Potential 
links between other small ncRNAs and PE are currently more tentative, thought several small ncRNAs have 
been associated with PE or with known mechanisms involved in PE pathogenesis. For example, misregulation 
of snoRNAs were recently found in placentas of women with severe PE67. Additionally, U1 snRNA was found to 
be related to inflammation by inducing inflammatory cytokine release68. Two tRNA types (tRNAVal and tRNAGly) 
were found to inhibit angiogenesis by modulating the function of endothelial cells69, and misregulation of tRNAs 
and snRNAs was detected in cells cultured under hypoxic conditions70. Overall, those and other accumulating 
evidences suggest that miRNAs as well as other small ncRNAs may have a role in PE development and can be 
potential biomarkers for PE early diagnosis. In the current study, we investigated the abundance of circulating 
small ncRNAs in the plasma of pregnant women in their first trimester, seeking transcripts that best separate the 
PE samples from those of healthy pregnant women, and thus can serve as potential biomarkers for preeclampsia 
early diagnosis.

Results
We performed small ncRNAs Next Generation Sequencing of PE and control samples, in a nested case-control 
study, aiming to find ncRNAs that best separate PE and control samples, and to evaluate their predictive value for 
PE early diagnosis.

Patient characteristics. RNA was extracted and small ncRNAs were sequenced from the plasma of 75 
pregnant women: 35 women that developed early onset PE (i.e., PE that develops before 34 weeks of gestation), 
and 40 women with normotensive uncomplicated pregnancies (i.e., a control set). All women were at the end 
of their first trimester (gestational age 11+0–13+6 weeks). Importantly, various ethnicities were included in the 
study (see a summary of maternal characteristics in Table 1). All women at the control group were women with-
out pre-existing medical conditions, with uncomplicated pregnancies resulting in a delivery of a phenotypi-
cally normal neonate at term and with normal birthweight for gestational age at delivery. None of these women 
had a history of chronic hypertension. Cases and controls were matched regarding maternal age, nulliparity, 
fetal gender, ethnicity and smoking status. They differed significantly for first trimester Mean arterial pressure 
(MAP) (p-value < 0.0001), Uterine artery pulsatility index (UT PI) (p-value < 0.0001), and chronic hypertension 
(p-value = 0.001), which are all known risk factors for PE development. Additionally, both groups are differed 
significantly for the existence of PE in a previous pregnancy which is a risk factor as well, nevertheless there is no 
association between the circulating ncRNA expression and previous PE. Perinatal outcome data, (i.e, gestational 
age at delivery and birth weight) was also significantly different between groups (p-value < 0.001), due to early- 
PE and control group definitions.

Differential expression analysis. Each of the most highly abundant transcripts in the women’s plasma 
was tested for differential expression in the PE vs. control samples, and 25 transcripts were found to be differ-
entially expressed (adjusted p-value < 0.05, see Table 2 and Fig. 1): 16 transcripts were up-regulated, and 9 were 
down-regulated. Of these, 7 transcripts were tRNAs and rRNAs encoded in the mitochondria, 12 transcripts 
were microRNAs, 4 transcripts were long non-coding RNAs (linc), one transcripts was ribosomal RNA and one 
transcript was processed transcript (i.e., a non-coding transcript that does not belong to any of the categories in 
Ensembl database). We tested the correlation of each of the differentially expressed transcripts and the maternal 
clinical features, and observed moderate yet significant correlations between miR-4433b and 2 maternal clinical 
features: the uterine artery pulsatility index (UT PI; r = 0.395, adjusted p-value = 0.016), and the mean arterial 
pressure (MAP; r = 0.442, adjusted p-value = 0.003).
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In order to validate the microRNAs expression obtained by the small RNA sequencing, we examined five 
microRNAs expression using qPCR in 14 samples: 6 PE and 8 controls. We tested the correlation between the 
microRNAs expression obtained by sequencing and by qPCR in the relevant samples, and found a significant cor-
relation in all tested microRNAs (see Supplementary Table S1), which confirms the microRNA counts obtained 
by sequencing.

To assess the 25 differentially expressed transcripts expression later in the pregnancy, after the appearance of 
PE symptoms, we sequenced small ncRNAs in the plasma of a subset of 40 women in weeks 20-22: 20 PE and 
20 controls. As this set size is half of the original size and thus insufficiently powered, out of the 25 differentially 
expressed transcripts, only 9 transcripts were significantly differentially expressed in the limited set of 40 first tri-
mester samples (adjusted p-value < 0.05, see Supplementary Table S2). In the second trimester, 4 transcripts out of 
the 25 were differentially expressed (adjusted p-value < 0.05, see Supplementary Table S3). Nonetheless, none of 
the transcripts displayed significant PE-dependent change in expression over the trimesters (PE/trimester inter-
action test, see Supplementary Table S4). These results suggest that fold changes observed in the first trimester are 
maintained during the second trimester as well, after the appearance of PE symptoms, though more samples from 
both gestational ages are required to further investigate this matter.

Preeclampsia/Control Samples Classification. We proceeded to build a generalized pipeline for PE 
sample classification, and to estimate its performance. Since none of the differentially expressed transcripts 
can fully discriminate PE from control samples (see Fig. 1), we decided on utilizing a multivariable model that 
combines the differentiate ability of several transcripts in a synergetic manner. To this end, we chose to train a 
logistic regression model via a cross validation (CV) procedure and test it on blind test sets in an iterative pro-
cess (see Fig. 2). In each cycle we randomly divided the samples dataset into a training set and a test set, and 
then trained a logistic regression model using a 5-fold cross validation procedure on the training set alone (see 
details in Materials and Methods). Briefly, the training set was divided into five non-overlapping and equally 
sized subsets, a logistic regression model was trained on four subsets and tested on the remaining subset. This 
process was repeated five times. The model features consisted solely of the ncRNAs expression; in each CV step a 
pre-processing feature selection was conducted, that included differential expression analysis only on the train-
ing set. Additionally, in each CV step we performed exhaustive search over all possible models. We limited the 

Characteristic Control (n = 40) PE (n = 35) p-value

Maternal age, years (IQR) 31.3 (25.9–34.6) 29.9 (28.1–34.5) 0.9200

Body Mass Index, kg/m2 (IQR) 24.1 (22.6–28.7) 28.4 (24.4–31.7) 0.0125

Gestational age, weeks (IQR) 12.8 (12.3–13.2) 12.7 (12.2–13.1) 0.3916

Crown-rump length, mm (IQR) 63.9 (57.5–70.2) 62.9 (56.2–67.9) 0.3029

Mean arterial pressure (MAP), mm Hg (IQR) 83.2 (79.4–87.7) 97.1 (90.1–108.7) <0.0001

Uterine artery pulsatility index (UT PI) (IQR) 1.5 (1.3–1.7) 2.5 (2–2.8) <0.0001

Gestational age at delivery, weeks (IQR) 39.8 (39.4–40.7) 31.4 (29.4–33.2) <0.0001

Birth weight, g (IQR) 3,420 (3,198–3,578) 1,222 (951–1,565) <0.0001

Fetal Gender, n(%) 0.65

   female 22 (55) 17 (42.5)

   male 18 (45) 18 (45)

Ethnicity, n(%) 0.2848

   Afro-Caribbean 15 (37.5) 19 (54.3)

   South Asian 1 (2.5) 1 (2.9)

   Caucasian 24 (60) 15 (42.9)

Cigarette smokers, n(%) 0.11

   No smoker 34 (85) 34 (97.1)

   Smoker 6 (15) 1 (2.9)

Family history of preeclampsia, n(%) 0.41

   Yes 2 (5) 4 (11.4)

   No 38 (95) 31 (88.6)

Parity, n(%) 0.0018

   Multiparous with no previous PE 15 (37.5) 6 (17.1)

   Multiparous with previous PE 0 (0) 8 (22.9)

   Nulliparous 25 (62.5) 21 (60)

Chronic hypertension, n(%) 0.001

   Yes 0 (0) 8 (22.9)

   No 40 (100) 27 (77.1)

Table 1. Clinical characteristics of PE and control groups. A comparison of maternal and pregnancy 
characteristics between the two groups: pregnant women that have developed preeclampsia (PE) and pregnant 
women with uncomplicated pregnancies (control). P-values were calculated using Fisher exact test for 
categorical variables, and using Mann-Whitney U test for continuous variables.
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models’ size to a maximum of six transcripts, in order to avoid over fitting of the data and due to future practical 
clinical use. The selected model was then applied on the reaming subset in the CV step and error rate was calcu-
lated. The model that obtained the lowest error rate in all five CV steps, was then applied to the blind test set and 
its performance was evaluated. We repeated this procedure 100 times, each time with a random partition to train-
ing and test sets, in order to increase the stability and generalization of the results, and to estimate the goodness 
of the procedure on a new blind data set. Using this procedure we achieved a mean AUC of 0.86 (SE = 0.02) and 
accuracy of 0.76 (SE = 0.02). The mean sensitivity at false positive rates of 10% and 5% were 0.45 (SE = 0.017) and 
0.28 (SE = 0.016) respectively. Figure 3 displays a summary of statistical measures calculated for this procedure. 
For the purpose of validating the computational pipeline, we conducted permutation tests to the classification 
process. We randomly permutated the samples’ conditions (i.e., PE/control) and followed the steps as described 
above. As shown in Fig. 3, the classification statistics in the permutation tests were distributed normally and fol-
lowed the results of a random classifier, which further strengths our method’s effectiveness, and demonstrates the 
predictive value of circulating ncRNA.

Discussion
PE is a pregnancy-associated multi-system disorder appearing at the second half of pregnancy, and is the leading 
cause of maternal and perinatal mortality and morbidity. The cause of PE is unknown, though it involves inade-
quate blood supply to the placenta leading to hypoxic environment9–11. PE remains unpredictable and is diagnosed 
only in the second or third trimester, consequently there is an increasing demand for better understanding of PE 
and development of an early diagnostics test. Although clinical symptoms are late, PE starts with placental dys-
function in the first trimester, hence early detection is feasible as early as weeks 10–1412. Developing a non-invasive 
efficient screening procedure to identify women at risk of PE would be beneficial for early targeted preventive/
prophylactic interventions. Recently reported meta-analysis suggests that the effect of low-dose aspirin for the 
prevention of PE is optimal only when initiated before or at 16 weeks of gestation, hence women at high risk for PE 
should be identified in early pregnancy15. Some potential biochemical and mRNA markers for PE early prediction 
were previously reported16, though none has been proven to effectively predict PE. Small ncRNAs have important 
roles in many cellular processes such as gene regulation, translation, splicing, and many more. They can be purified 
from the plasma of first trimester pregnant women in sufficient amounts for accurate identification and quantifi-
cation, which suggest their potential value as biomarkers for PE non-invasive early diagnosis. Though circulating 
miRNAs in maternal blood that are associated with preeclamptic risk were identified in later stages of the preg-
nancy61–66, currently no such markers were found for an early diagnosis prior to symptoms appearance.

Transcript Transcript ID Transcript Biotype
Mean 
Counts

Fold 
Change P-Value

Adjusted 
p-Value

mitochondrially encoded tRNA proline ENST00000387461 Mitochondrial tRNA 490 4.25 1.65 × 10−16 1.57 × 10−14

mitochondrially encoded tRNA lysine ENST00000387421 Mitochondrial tRNA 433 2.27 3.43 × 10−6 1.63 × 10−4

microRNA 182 ENST00000385255 miRNA 1,325 0.54 5.45 × 10−6 1.73 × 10−4

microRNA 10b ENST00000385011 miRNA 7115 0.50 8.96 × 10−6 2.13 × 10−4

mucin 2, oligomeric mucus/gel−forming ENST00000361558 processed transcript 901 2.34 1.68 × 10−5 3.19 × 10−4

microRNA 25 ENST00000384816 miRNA 5,585 0.61 5.38 × 10−5 6.39 × 10−4

RP11–259O2.3-001 ENST00000514519 lincRNA 409 2.97 4.92 × 10−5 6.39 × 10−4

microRNA 4433b ENST00000581329 miRNA 473 1.71 4.98 × 10−5 6.39 × 10−4

mitochondrially encoded tRNA histidine ENST00000387441 Mitochondrial tRNA 247 1.95 9.21 × 10−5 9.72 × 10−4

HELLP associated long non-coding RNA ENST00000626826 macro lncRNA 729 2.02 1.08 × 10−4 1.03 × 10−3

microRNA 99b ENST00000384819 miRNA 344 0.65 1.57 × 10−4 1.31 × 10−3

microRNA 143 ENST00000385300 miRNA 1,632 0.62 1.66 × 10−4 1.31 × 10−3

mitochondrially encoded tRNA valine ENST00000387342 Mitochondrial tRNA 664 1.99 2.11 × 10−4 1.54 × 10−3

microRNA 151a ENST00000521276 miRNA 10,021 0.75 5.68 × 10−4 3.85 × 10−3

microRNA 191 ENST00000384873 miRNA 31,187 0.75 6.26 × 10−4 3.97 × 10−3

RNA, 5.8 S ribosomal pseudogene 4 ENST00000365096 rRNA 1,652 1.68 1.65 × 10−3 9.21 × 10−3

mitochondrially encoded tRNA serine 2 (AGU/C) ENST00000387449 Mitochondrial tRNA 1,250 1.72 1.61 × 10−3 9.21 × 10−3

microRNA 146b ENST00000365699 miRNA 1,323 0.75 2.67 × 10−3 1.41 × 10−2

microRNA 221 ENST00000385135 miRNA 587 1.44 3.97 × 10−3 1.98 × 10−2

mitochondrially encoded tRNA tyrosine ENST00000387409 Mitochondrial tRNA 173 1.53 4.41 × 10−3 2.09 × 10−2

mitochondrially encoded 16 S RNA ENST00000387347 Mitochondrial tRNA 6,218 1.63 4.82 × 10−3 2.18 × 10−2

microRNA let-7g ENST00000362280 miRNA 1,073 1.27 9.85 × 10−3 4.26 × 10−2

long intergenic non-protein coding RNA 324 ENST00000315707 lincRNA 1,087 1.50 1.03 × 10−2 4.27 × 10−2

AC113133.1-201 (microRNA-486) ENST00000612171 miRNA 17,569 0.70 1.11 × 10−2 4.38 × 10−2

AC020956.3-001 ENST00000614316 lincRNA 902 1.71 1.18 × 10−2 4.47 × 10−2

Table 2. Differentially expressed small ncRNAs in PE vs. control sample. Each of the most highly abundant 
transcripts in the women’s plasma was tested for differential expression in 35 PE vs. 40 control samples, and 25 
transcripts were found to be differentially expressed (FDR adjusted p-value < 0.05).
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Using small RNA sequencing analyses, we identified significant changes in the circulating ncRNA abundance 
in maternal plasma samples of first trimester PE pregnancies, compared with uncomplicated pregnancies. Seven 
of the up-regulated transcripts (and none of the down-regulated ones) were tRNAs and rRNAS encoded in the 
mitochondria. A growing body of evidence suggests that mitochondrial dysfunction is manifested by oxidative 
stress, compromised differentiation, and invasion of trophoblasts, which have been associated with PE patho-
genesis71–76. Moreover, Qiu et al. found that the odds of PE were positively correlated with the copy number of 
mitochondrial DNA in maternal blood77. Our results suggest that in addition to mitochondrial DNA, mitochon-
drial non-coding RNA might also be associated with the development of PE. To the best of our knowledge, this 
is the first evidence of elevated levels of mitochondrial ncRNAs in the maternal plasma of PE patients. Further 
prospective research is required to assess these results and to investigate the mechanisms through which altered 
mitochondrial RNA play a role in the pathogenesis of PE.

Furthermore, 12 out of the 25 differentially expressed transcripts were microRNAs, importantly most were 
previously related to known mechanisms in PE pathogenesis. For example, miR-10 was down-regulated in PE vs. 
control samples, in agreement with a previous study that reported down-regulation of miR-10 in preeclamptic 
placenta compared with normal placentas from uncomplicated pregnancies59. MiR-10 directly targets vascular 
endothelial growth factor receptor 1 (VEGF-R1, Flt-1) and its soluble splice variant, sFlt-1, both anti-angiogenic 
factors78. Hence, down-regulation of miR-10 causes increased expression of both sFlt-1 and Flt-1, and signifi-
cantly impairs the angiogenic behavior of human endothelial cells78. It is well known that angiogenesis is a major 
mechanism involved in PE pathogenesis. Both sFlt-1 and Flt-1 bind vascular endothelial growth factor (VEGF) 
and placenta growth factor (PlGF), which play a key role in promoting angiogenesis. A number of studies found 
elevated sFlt-1 levels and reduced levels of free VEGF and PlGF prior to the onset of the clinical symptoms of 
PE in blood samples from pregnant women who later developed PE19,79,80, which support our results of reduced 
miR-10 expression.

Figure 1. Normalized counts for differentially expressed transcripts in PE vs. control samples. Each of the 
most highly abundant transcripts in 35 PE vs. 40 control samples was tested for differential expression, and 25 
transcripts were found to be differentially expressed (adjusted p-value < 0.05). Normalized counts are presented 
as violin and box plots. The upper and lower limits of the boxes represent the 75th and 25th percentiles. The 
upper and lower whiskers represent maximum and minimum values. The median is indicated by the line in 
each box. Outliers are indicated by circles.
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Most of the remaining differentially expressed micoRNAs were also previously related to angiogenesis (miR-
14345, miR-22147,48, and miR-18246), as well as to other mechanisms in PE pathogenesis such as inflammation 
(miR-22181), hypoxia (miR-9949 and miR-151a50), regulation of blood pressure (miR-14351) and cell differen-
tiation, apoptosis, and migration/remodeling (miR-14352, miR-19153, miR-18246, miR-2554, and let-7 family55). 
Moreover, similarly to miR-10, altered expression of miR-14382, -22183, -18246, -2584, -151a85–87, and -19184 have 
been detected in placentas from preeclamptic pregnancies in previous studies. Two of the 12 circulating microR-
NAs: mir-18288 and miR-22166, were also shown as differentially abundant in PE plasma samples in the third 
trimester. Additionally, we observed moderate yet significant positive correlations between miR-4433b and 2 
maternal clinical features, which may suggest prognostic value for it.

From the remaining differentially expressed transcripts, 4 were long non-coding RNAs (linc). Interestingly, 
HELLP associated long non-coding RNA (LINC-HELLP) was over-expressed in PE vs. control samples. HELLP 
syndrome is a pregnancy-associated disease, a severe variant of PE, inducing hemolysis, elevated liver enzymes, 
and low platelet levels in the mother. LINC-HELLP is a novel lincRNA that was recently identified89. It is localized 
in first-trimester extravillous trophoblasts and negatively affects the differentiation of the extravillous tropho-
blasts90. Mutations in LINC-HELLP identified in HELLP families negatively affected trophoblast differentiation89, 
all of which support our findings.

Due to PE heterogeneity and complexed nature, it is unlikely to be accurately early detected by a single varia-
ble. Indeed none of the differentially expressed ncRNAs displayed a perfect separation of PE and control samples, 
hence we utilized a multivariable model that incorporates several transcripts for PE classification. Based on the 
differentially expressed ncRNA expression, we built a classification pipeline for PE, and displayed its efficiency. 
Our pipeline generates a generalizable logistic regression model using a 5-fold cross validation on numerous 

Figure 2. Schematic diagram of the workflow for PE/control samples classification. Data is randomly divided 
into a training set and a test set. 5-fold cross validation procedure is used on the training set to obtain a logistic 
regression model that best classifies training-set samples, and then it is tested on the blind test set. This process 
is repeated a 100 times, each time with a random partition to training and test set, in order to increase the 
stability and generalization of the results, and to estimate the goodness of the procedure on a new blind data set. 
The classification accuracy in the blind test set and related statistics are calculated in each of the iterations, and 
are summarized for overall evaluation of the pipeline.
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random partitions into training and test sets. We chose a rather strict machine learning procedure for evaluat-
ing the classifier, by using multiple randomly chosen blind test sets, in addition to the cross validation method. 
This procedure enables us to estimate the accuracy of the classifier given a new unseen data set. Additionally, we 
trained our model on samples from several ethnicities in order to increase its generalization ability. We acknowl-
edge that additional studies are essential in order to validate the differentially expressed ncRNAs, and to test the 
classification method. Those validation studies should include larger datasets with samples from several other 
ethnicities and countries. Our findings suggest the predictive value of circulating small ncRNAs in the first tri-
mester, and demonstrate their application in classification PE and control samples. Further study is required in 
order to determine whether integrating to the model other clinical features could improve its performance.

Figure 3. Classification results on real and permutated data sets. Density plots of statistical measures 
obtained by 100 iterations of our classification procedure on real (blue) and permutated (red) data sets. Real 
dataset included 35 PE and 40 control samples. Permutated dataset included the same samples after random 
shuffling of their conditions (i.e., PE/control). Means are indicated as well. Sensitivity: true positives out of all 
positives; Specificity: true negatives out of all negatives; Accuracy: true classifications out of all classifications; 
Matthews’s correlation coefficient (MCC): a correlation coefficient between the observed and predicted binary 
classifications; AUC: area under the ROC curve; F1 Score: the harmonic mean of precision and sensitivity; 
Positive Likelihood Ratio: sensitivity/(1-specificity); Negative Likelihood Ratio: (1-sensitivity)/specificity.



www.nature.com/scientificreports/

8SCIeNTIFIC REPORtS |  (2018) 8:3401  | DOI:10.1038/s41598-018-21604-6

Our study has several limitations, which are derived mainly from the relatively limited number of samples 
in our dataset. Using a small dataset to train and test a prediction model might lead to an overestimation of the 
performance. In order to reduce this effect, we applied a cross validation procedure in 100 repeats and tested the 
model on numerous outer random test sets. Nevertheless, we acknowledge our results might still be overesti-
mated, and further validation on an independent dataset is required. Acquiring more samples of various origins 
and integrating more predictive clinical features, will enable to increase our model generalization, test its perfor-
mance, and to further confirm the differentially expressed ncRNAs.

In summary, our study suggest the potential of circulating small ncRNA as detectible and accurate biomarkers, 
which should be further validated in additional studies. Our findings lay the foundation for producing a novel 
early non-invasive diagnostic tool for PE, which will serve as an effective intervention, and consequently, reduce 
the life-threatening risk for both the mother and fetus.

Materials and Methods
Samples Collection. This was a nested case-control study drawn from a large prospective screening for 
adverse obstetric outcomes in women who were attending for their routine first hospital visit in pregnancy at 
King’s College Hospital, UK. This visit, which was held at 11+0 to 13+6 weeks gestation, included (1) recording of 
maternal characteristics, medical history and clinical measurements (2) collection of blood samples. Gestational 
age was determined from the fetal crown-rump length91. The prospective study period was from October 2006 to 
January 2013. The cases of PE were selected at random, and each case was matched to controls that were sampled 
on the same or next day. This study consisted of 75 pregnant women: 35 women that developed early-PE (i.e., > 34 
weeks of gestation) and 40 healthy women with uncomplicated pregnancies (i.e., control set). All control set 
women delivered at term a phenotypically normal neonate and with birth weight between the 5th and 95th per-
centiles for gestational age at delivery. None of these women had history of chronic hypertension. For a subset of 
40 women, blood samples were taken also in the second trimester (weeks 20+0-23+6). The women gave written 
informed consent to participate in the study, which was approved by the NHS Research Ethics Committee. All 
methods were performed in accordance with the relevant guidelines and regulations. Data on pregnancy outcome 
were collected from the hospital maternity records or the general medical practitioners of the women. The obstet-
ric records of all women with preexisting or pregnancy-associated hypertension were examined to determine 
whether the condition was preeclampsia, as defined by the International Society for the Study of Hypertension 
in Pregnancy92.

Small ncRNA Extraction and Sequencing. RNA was extracted via miRNeasy Serum/Plasma Kit, and 
quantified using a NanoDrop spectrophotometer (ND-1000). The spectrophotometric absorbance parameters of 
the samples were: 260/280 nm ~1.8 and 260/230 nm ~1.8. Small RNA libraries were prepared for deep sequencing 
using Illumina’s TruSeq small RNA sample preparation kit. During this process, samples were ligated with 3′ and 
5′ adapters, reverse-transcribed and then amplified using a PCR. Libraries of cDNA were prepared from 140–
160 bp PCR products (representing 20–40 nt RNA molecules) and sequenced in separate lanes on an Illumina 
HiSeq 2500 instrument at the Technion High Throughput Sequencing Unit.

Sequencing Reads Profiling and Differential Expression Analysis. Sequence reads were analyzed 
as follows:

 1. fastq-mcf tool (http://code.google.com/p/ea-utils/wiki/FastqMcf) was used for adapter sequences clipping, 
low quality (i.e., quality 30) bases trimming and filtering out short reads (i.e., reads with less than 16 nt).

 2. Reads were mapped against Ensembl database for human ncRNAs release 8393 using Burrows–Wheeler 
transform based alignment tool (BWA)94. Only uniquely mapped reads with up to 2 mismatches were 
considered.

 3. Differential expression analysis: We first performed Principal component analysis (PCA) using prcomp 
method in R. A PCA plot (i.e., a plot that shows the samples in the two-dimensional plane spanned by their 
first two principal components) was used to discover unwanted variation present in the data (i.e., batch 
effects), and to detect outlier samples. This analysis indicated the existence of two outlier samples, which 
were removed from downstream analysis, and a batch effect that matched the dates of the samples process-
ing and sequencing. Our general goal was to find potential biomarkers for early detection of PE, there-
fore we focused on transcripts that had substantial expression, and sought those who were differentially 
expressed. We applied DESeq295 (in R) on the 100 most abundant transcripts to obtain a list of differential 
expressed transcripts between control and PE samples. We included batch variable in the DESeq2 design 
in order to correct for batch effect. Only transcripts with p-value < 0.05 after false discovery rate (FDR) 
adjustment were considered.

 4. The differentially expressed transcripts expression in the limited set of 40 women was compared between 
the first and second trimesters using DESeq295. We first performed differential expression analysis on the 
limited set in each trimester separately as explained above. We then combined first and second trimes-
ter samples and used a design formula that models the condition (i.e., PE/control) difference at the first 
trimester, the difference over trimesters, and any condition-specific differences over trimesters (i.e., an in-
teraction term condition:trimester). We performed a likelihood ratio test with a reduced model which does 
not contain the interaction term, to test whether the condition induces a change in gene expression at the 
second trimester compare to the first trimester. Only transcripts with p-value < 0.05 after false discovery 
rate (FDR) adjustment were considered.

http://code.google.com/p/ea-utils/wiki/FastqMcf
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Sample Classification. Our goal was to build a generalized classifier and to estimate its performance. To this 
end we chose to use logistic regression in a cross validation (CV) procedure. In order to obtain more generalizable 
models, the cross validation concept was applied 100 times. In each cycle we divided the sample into training and 
test sets, and applied 5-fold CV on the training set. I.e., the training set was divided into 5 non-overlapping and 
equally sized subsets, a logistic regression model was trained on 4 subsets and tested on the remaining subset. This 
process was repeated 5 times, thus all subsets were used as a test set in each step. We have applied a feature selec-
tion procedure in each CV cycle and narrowed down the list of transcripts to differentially expressed transcripts 
that have substantial expression in the current subset (i.e., in the top 100 most abundant transcripts). We then col-
lapsed highly correlated transcripts (i.e., Pearson correlation >0.7) and counts were normalized using DESeq295. 
Batch effect was removed using ComBat method from SVA package in R96,97, that adjusts for known batches using 
an empirical Bayesian framework. For model selection we have used glmulti package in R98, that performs an 
exhaustive search over all possible models, fit each model to the current set using glm and ranks them by Akaike 
information criterion (AIC). The model was then applied on the reaming subset (i.e., the inner test set) and error 
rate was calculated. The model that obtained the lowest error rate in all CV steps, was selected in each iteration 
and was tested on the outer test set. After 100 iterations we have calculated the average sensitivity, specificity, area 
under the receiver operating characteristic curve (AUC) and related statistics. All performance statistics were cal-
culated from prediction results on the outer test set in the 100 iterations. Sensitivities at 10% and 5% false positive 
rates were calculated using a 5-fold cross validation over all samples and averaged over 100 iterations.

Quantitative polymerase chain reaction (qPCR) Validations. RT-qPCR was performed to vali-
date the differentially expressed miRNAs obtained by small RNA-Seq using PE and control samples. RNA was 
extracted via miRNeasy Serum/Plasma Kit. The Applied Biosystems™ TaqMan™ Advanced miRNA Assay 
(Applied Biosystems; Thermo Fisher Scientific, Inc.) was used to test miRNA expression. PCR amplification and 
reading were performed with the StepOne™ Real-Time PCR System (Life Technologies; Thermo Fisher Scientific, 
Inc.). Expression values were calculated using the comparative threshold cycle method99, and normalized with 
cDNA concentrations. We used cDNA concentration as normalization factor since initial RNA concentrations 
were undetectable using either NanoDrop nor Qubit systems, and due to the absence of a priori known stable 
normalizer miRNA. The cDNA concentrations were measured using the QuBit dsDNA quantification system 
and high sensitivity assay reagents (Invitrogen). Pearson’s product moment correlation coefficient were calculated 
using cor.test method in R between sequencing normalized counts and qPCR normalized values (2−Ct). Outlier 
samples were removed from correlation calculation due to problems in RNA extraction for sequencing (one sam-
ple) or due to anomalous results in RT-qPCR (2 samples).

Data availability. The datasets generated during and/or analyzed during the current study are available from 
the corresponding author on reasonable request.
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