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Abstract—The objective of this work is to introduce a non-
invasive diagnosis procedure for aneuploidy and minimize the
social and financial cost of prenatal diagnosis tests that are
performed for fetal aneuploidies in an early stage of pregnancy.
We propose a method using artificial neural networks trained
with data from singleton pregnancy cases, while undergoing
first trimester screening. Three different datasets1 with a total
of 122362 euploid and 967 aneuploid cases were used in this
study. The data for each case contained markers collected from
the mother and the fetus. This study, unlike previous studies
published by the authors for a similar problem differs in three
basic principles being, a) the training of the artificial neural
networks is done using the markers’ values in their raw form
(unprocessed), b) a balanced training dataset is created and
used by selecting only a representative number of euploids for
the training phase, and c) emphasis is given to the financials
and suggest hierarchy and necessity of the available tests. The
proposed artificial neural networks models were optimized in
the sense of reaching a minimum false positive rate and at the
same time securing a 100% detection rate for Trisomy 21. These
systems correctly identify other aneuploidies (Trisomies 13&18,
Turner, and Triploid syndromes) at a detection rate >80%. In
conclusion, we demonstrate that artificial neural network systems
can contribute in providing non-invasive, effective early screening
for fetal aneuploidies with results that compare favorably to other
existing methods.

Index Terms—Bioinformatics, chromosomal abnormalities,
computational intelligence, data normalization, fetal aneuploi-
dies, machine learning, non-invasive prenatal diagnosis, imbal-
anced data.

I. INTRODUCTION

THE early diagnosis of fetal aneuploidies in the first
trimester of pregnancy can be achieved with amniocen-

tesis or Chorionic Villus Sampling (CVS). However, such
methods are invasive and they carry a risk of infections, fetal
damage during the examination and miscarriage rates of about
0.4% for amniocentesis and 1.1% for CVS [1].

In Europe, the cost of an amniocentesis test varies between
300 and 1000 euros. The cost of the loss of a life due to
amniocentesis is tremendous. Therefore, it is important to
reduce the false positive rate (FPR) as much as possible, but at
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the same time be able to detect all, or most of the aneuploidies.
Previously, the overall cost for the detection was much higher
because pregnant women were advised to go for amniocentesis
based only on their age e.g > 35; which not only increased
the FPR beyond 25% and the risk of unexpected aneuploidy
births much greater than zero since in many cases the cost
for the invasive test could not be afforded and/or the risk for
miscarriage could not be taken by the parents.

As alternative, non-invasive methods have been proposed by
Snijders et. al. [2], [3], Kagan et. al. [4], [5] and Spencer et. al.
[6], [7]. Essentially, a risk for aneuploidy is estimated based on
a prenatal examination test that is performed to every pregnant
woman in the first trimester of pregnancy. In the literature,
the most relevant markers from the prenatal examination are
the following: maternal age, serum free β-hCG, pregnancy-
associated plasma protein-A, nuchal translucency thickness,
nasal bone, tricuspid flow, and ductus venosus flow. A Statis-
tical Mixture Model (SMM) is used in [2]–[10] as an estimator
for the risk of trisomy 21 (T21). Outcomes that are rated as
“high risk” are suggested to follow invasive test. Currently,
the detection rate (DR) for the T21 of the abovementioned
methods is 95% at a 5% FPR.

In the last years, another non-invasive method has gained
particular attention in the scientific community. A sample
from the maternal blood is used to isolate the plasma via
double centrifugation. Then, the circulating cell-free DNA is
sequenced from the maternal plasma, using state-of-the-art
equipment. The density of the DNA sequences are normalized
and distributed for every chromosome separately for euploid,
T21 and T18. A standard statistical classification technique
such as Z-transform or t-test is applied to the euploidy and
aneuploidy distributions of the chromosomes 21 and 18 to
estimate the probability for aneuploidy of an unknown case
[11]–[15].

In this work we propose the use of a machine learning
approach using artificial neural networks (ANNs) that have
the ability to identify patterns from a training dataset, in a
similar manner to the biological function of the human brain
[16]. In our previous work [17] we have showed that ANNs
can achieve 100% DR for T21 at 3.6% FPR.

A. Statistical Mixture Model

A prenatal examination is performed to the pregnant woman
between the 9th + 3 and 11th week + 6 days of gestation.
From the maternal blood, the concentrations of the two bio-
chemical markers a) pregnancy-associated plasma protein-A
(PAPP-A) and b) the serum free β-hCG are measured. Fetal
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ultrasonographic markers include the levels of appearance
of a subcutaneous collection of fluid behind the fetal neck,
called Nuchal Translucency (NT). The amount of the NT
is statistically increased in fetuses with T21 [4]–[6]. Other
sonographic markers are measured such as the Crown Rump
Length (CRL) and the Nasal Bone (NB). The CRL is a
physical measurement of the length in millimeters between
the neck and the bottom of the buttocks of the fetus. The NB
indicates the presence or the absence of the fetal NB and the
obstetrician marks it at the time of the examination as normal
or abnormal respectively.

It has been proposed in [4]–[6], [8]–[10] that the biochem-
ical markers β-hCG and PAPP-A and the NT increase their
separability strength between euploid and aneuploid. Addition-
ally, the values of the biochemical markers are normalized
with their multiples of their medians (MoM). The MoMs is
a data normalization method that has been found effective in
medical data [4], [5] and is a measure of how many times
an individual test result deviates from the median. The term
“multiples” refers to this measure. The MoMs are calculated
as follow: first the data are clustered in three categories based
on the gestational age at the time of the examination: a) 9-10,
b) 10-11 and c) 11-12 weeks of gestation. Then, for every
category the median value of the biochemical markers for
the euploid cases is calculated. Finally, the raw observation is
divided by the respective mean value of the specific gestation
age. The NT did not respond positively to the MoM values
and it is transformed into the delta NT that is a measure of
the deviation from its euploid zero median.

The classification is done as follow: for every marker, a
risk is estimated based on the Gaussian distribution of the
respective marker values and it is multiplied with the maternal
age related risk to yield a final result. The Ductus Venosus
Flow (DV) and the Tricuspid Valve Flow (TF) may be used
to increase the detection rate and reduce the FPR [9], [10].

B. Cell-Free Fetal DNA Test

In the literature, the most promising results within the non-
invasive methods are achieved with the cell-free fetal DNA
test. In [11], it is reported that a perfect isolation of 300
euploid and 50 cases of T21 is achieved, together with a 98%
detection rate for the trisomy 18 (T18). This method returned
no result in three euploid cases (about 1% of the population).
Another recent study [12] reports 100% detection rate of 14
cases of T21 at 0% FPR with 26 euploid. The results in [13]
show that significantly lower FPR can be achieved compared
to the SMM method that is currently used. Particularly 146958
cases have been studied including 726 T21, 170 T18 and
22 trisomy 13 (T13) for which outcome data were available
in 112669 (76%). The overall Sensitivity and Specificity are
99.02% and 99.86% respectively. Other studies [14], [15]
report similar results.

Even though the results of the cell-free fetal DNA approach
are significantly better than other non-invasive methods, we
identify some drawbacks. First, the test does not yield im-
mediate results. It requires specialized doctors, expensive
equipment and laboratories. Therefore, it is a method that

cannot be applied in one visit. Another drawback of this
method is that the DNA sequence is statistically visualized and
the classification is done using a threshold on the probability
of aneuploidy risk. This means that the results need to be
cross-validated in several standard ways e.g. 3-fold or leave-
one-out cross-validation to make sure that are consistent.
Finally, the other chromosomal abnormalities (OCA) such as
Turner syndrome or triploidy are not identified. However, a
combination between the existing non-invasive methods may
yield to an optimized solution to the problem. A combination
of two non-invasive methods, the prenatal screening and the
maternal blood cell-free fetal DNA testing is proposed in [15].

C. Machine Learning

ANNs have been widely used in medical applications for
the prediction of cancer [18]–[20], Parkinson disease [21] and
other serious diseases [22]–[24]. The major difference between
statistical methods and ANNs in classification is that ANNs
have the ability to learn and store information by examples
that are presented one by one. In other words, statistical
information such as the distribution, the mean and standard
deviation values are not significant. This is done in a similar
process as the biological neural networks process information
in the brain.

The research question of study is to examine the potential
value of ANNs in the prediction of the risk for T21 and
OCA from ultrasonographic and biochemical markers at the
early stage of gestation. Additionally, we make experiments to
test the possible contribution of normalized data over the raw
data. Furthermore, we question if the use of balanced training
sets between euploid and aneuploid achieve more reliable
and consistent results. Finally, we explore the contribution of
different combinations of input markers. The objective of this
study is to build a system that will identify 100% of the T21
at the lowest FPR possible, using the most reliable type of
markers for the training of the ANNs, being raw or normalized,
balanced or imbalanced training sets and the combination of
the input markers.

In Section II we present our methodology which includes
a description and analysis of the available data, the ANN
structures, the cross-validation approach for testing the models,
the normalization of the data and the procedure for creating
balanced training sets. In Section III we present our results
and we conclude with Sections IV, V and VI.

II. METHODS

Three different datasets are provided by the Fetal Medicine
Foundation (FMF) and used in this study. The first (Dataset
A), consists of 51001 cases of pregnant women that followed
a prenatal examination within the first trimester of pregnancy,
and similarly the second (Dataset B) and the third (Dataset C)
of 29999 and 42329 cases respectively. All the samples were
very carefully collected and thoroughly tested, and they are
maybe the largest complete dataset in existence today for this
kind of study.

We used part of Dataset A as training set for performing
a grid search of ANNs over a set of parameters such as
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Fig. 1: All of the three datasets are divided into training and
validation sets. The training set of the Dataset A is used
to perform a grid search over different parameters of the
ANN. We use the parameters of the network that yielded
the best results on the validation set of Dataset A to perform
experiments using the Datasets B and C.

the hidden units, activation functions and training epochs, as
shown in Fig. 1. Then, we selected the ANN that yielded the
best results on the remaining cases that formed the test set
of Dataset A. All of our experiments were then done using
Datasets B and C that we call “testing datasets”. The ANNs
were built using the parameters of the ANN that was identified
as the optimal in the grid search.

We proceeded with our research approach by implementing
three different experiments. The first experiment was done for
identifying the optimal combination of markers that are needed
as input to our system. We created eight groups of markers
and we built an ANN for each one of them to compare their
performance. The second experiment was done for testing
whether the use of normalized data values for the markers
outperform the use of raw values. The third experiment dealt
with a more technical question concerned with the imbalanced
nature of the datasets, which is due to the very low percentage
of aneuploidies in the datasets. A data reduction technique
was carried out for reducing the population of euploid cases
during the training phase. Several representative ANNs were
developed and tested, both with balanced and imbalanced
datasets and the results were compared.

A. Data

The populations of euploid and aneuploid of each dataset
are shown in Table I. The vast majority of the cases are euploid
creating a highly imbalanced situation between the euploid and
aneuploid cases.

The number of markers/features that were available for our
dataset is 22. Most of them are related to the physiological and
historical data of the pregnant woman, such as the history of
aneuploidy in previous pregnancies, smoking or drug habits,
symptoms of hypertension, way of conception, ethnicity, etc.
Other markers of apparently greater importance since they are
taken during pregnancy are the biochemical PAPP-A and β-
hCG and the ultra-sonographic markers, DV and the absence
or presence of the fetal NB.

TABLE I: Euploid and aneuploid populations of the three
datasets used.

Dataset Euploid T21 T18 T13 Triploidy Turner
A 50517 408 39 14 10 13
B 29790 124 42 10 14 19
C 42055 152 60 22 14 26

B. Artificial Neural Networks

The major advantage of the use of ANNs compared to other
statistical approaches for classification tasks is their ability to
learn by examples. A typical architecture of an ANN has one
input layer, one or more hidden layers and one output layer.
Each layer has a number of nodes that are connected to each
other via a weight that represents the synapse in the biological
neural networks. The first layer consists equal nodes to the
number of input markers. The number of nodes in the hidden
layers is a parameter and it has to be optimized manually,
according to the problem under study. The last layer (output
layer) contains one or more nodes, depending on the number
of classes. In tasks with two classes, it is commonly used one
node. The value of the output layer is finally passed through
a step function where a cut-off point binarizes the output into
0 or 1.

In the training phase of an ANN, all the examples are pre-
sented to the nodes of the input layer one by one. The values of
the input pattern are first multiplied with the respective weight.
Then, all the products between the input values and the weights
of every node are summed and passed to the nodes of the first
hidden layer, through an activation function. The information
from the hidden layer to the next hidden layers and the output
layer is passed in a similar way as from the input layer to the
hidden layer. One epoch is considered when all the examples
are seen by the network and processed through the hidden
layer(s) and the output layer. After every epoch, the weights of
the ANN are updated based on a cost function that is calculated
as an error function between the known target and the output
value of the ANN. The size of the weight change that is made
in every epoch is controlled by a parameter called “learning
rate”. One common error function that is used in feed-forward
backpropagation networks is the Mean Squared Error (MSE).
The training of an ANN converges when the MSE is below
a certain threshold, or when the specified epochs are reached.
In our experiments we used feed-forward backpropagation
networks with one hidden layer and one node in the output
layer. The weights are initialized randomly and the learning
rate was set at 0.3. We used 500 epochs for training the ANNs.

C. Cross Validation

The three datasets were split in two sets each of 70% and
30%. The first set is used for training the ANNs. The second
set is kept away from the training procedure as the validation
set. The number of cases in each training and validation sets
for the three datasets used are shown in Table II.

D. Marker Selection

After the consultation of the doctors that are involved in
this research, we have made experiments with the aim of
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TABLE II: Cross validation. Training and validation sets for
the three datasets used.

Training Validation
Dataset Euploid T21 Euploid T21 OCA

A 33619 279 16898 129 76
B 20782 87 9008 37 85
C 31225 100 10830 52 122

TABLE III: Short and long groups of input markers that are
used as inputs to the neural network. The abbreviations MA,
CRL, NT, DV, TF and NB stand for maternal age, crown
rump length, nuchal translucency, ductus venosus, tricuspid
flow and nasal bone respectively. The word YES indicates that
the specific maker is used in the respective group. Similarly,
the word NO indicates that a marker is not used.

Long Short
Markers 9 8a 7 8b 6 5a 5b 4

MA Yes Yes Yes Yes Yes Yes Yes Yes
CRL Yes Yes No No Yes Yes No No

PAPP-A Yes Yes Yes Yes Yes Yes Yes Yes
β-hCG Yes Yes Yes Yes Yes Yes Yes Yes

Prev. T21 Yes No No Yes Yes No No Yes
NT Yes Yes Yes Yes Yes Yes Yes Yes
DV Yes Yes Yes Yes No No No No
TF Yes Yes Yes Yes No No No No
NB Yes Yes Yes Yes No No No No

minimizing the required number of prenatal examinations
that a pregnant woman is requested to perform. Two groups
of markers namely “short” and “long” were examined as
a potential two-stage screening for aneuploidy. The “short”
group is consisted of the maternal age, the biochemical β-
hCG and PAPP-A, and the fetal NT. In the “long” group we
included three additional markers, the DV, the TF and the
absence or presence of the NB that are extracted from an
additional special ultra sound examination.

From the two groups of markers, we created eight com-
binations that are used as input to the ANN. In Table III
we present the combinations used in both “short” and “long”
groups. In the second row we show the ID of every network
that corresponds to the figures in Section III.

E. Data Normalization

The conversion of the biochemical markers PAPP-A and β-
hCG into their MoMs, and the NT into delta NT has been
proposed by Kagan et. al [4] as a step in their methodology
for the patient-specific risk for T21. The authors in [4] show
that the values of the biochemical markers and the NT are cor-
related with the gestational age at the time of the examination.

In Fig. 2, we superimpose the raw (black dots) and the MoM
(grey dots) values for the biochemical marker PAPP-A of all
the cases of Dataset A. We note that the data were first sorted
based on the gestational age. In X-axis, we plot the gestational
age in days to better visualize the effect that the raw values
of PAPP-A are correlated with gestational age. It is shown in
Fig. 2 that the values after normalization are distributed in a
lower range and the correlation to the gestational age is lost.
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Fig. 2: The Raw and normalized (MoM) values of the PAPP-A
of all the cases that consist the Dataset A. The values are sorted
in ascending order based on the gestational age. It is shown
that the raw values of the PAPP-A increase with gestational
age, while the normalized values are distributed around the
average value of 2.5.

F. Data Reduction

The datasets used in this study are highly imbalanced: the
euploid cases occupy more than 99% of the total population.
In machine learning, the use of imbalanced populations for
training may cause several technical problems. For instance,
Bayesian classification uses an a-priori risk that is based on the
population of each class. ANNs adjust their weights according
to the MSE of each epoch, as explained in Section II-B. Since
the MSE is global for both minority and majority classes,
the false predictions of the minority class are not influencing
significantly the total MSE. In Fig. 3 we present the MSE of
two neural networks trained with a) imbalanced (solid line)
and b) balanced (dashed line) sets for 500 epochs. It is shown
that the MSE of the balanced training set is significantly lower.

Several approaches for creating balanced training sets are
proposed in the literature. One way is to choose representative
instances from the majority class to reduce the population for
training. Another way is to artificially create data to increase
the population of the minority class. Creating artificial cases
for medical data is a difficult task due to the unpredictable
correlation of the markers. For instance, the CRL and the
NT are correlated with the gestational age at the time of the
examination. This relationship is not fully understood and we
are uncertain if we can model artificial data that will follow
these specific pattern relations.

There is no “best method” to apply in general because the
method is problem dependent and highly relevant to the nature
and the complexity of the data under study. This finding is
supported also by the fact that ANNs learn by training and
analysis does not assume normal distribution.

In this study, we choose the first approach to reduce the
population of the majority class. First, we apply unsupervised
clustering to the euploid cases using the k-means algorithm
with five prototypes. The number of the prototypes was
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Fig. 3: Mean Squared Error (MSE) of the neural network that
was trained for 500 epochs. Dashed and solid lines show the
MSE of balanced and imbalanced training sets.

TABLE IV: Cluster map from the k-means algorithm.

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5
Input 5084 15479 1619 227 11210

Reduced 76 231 25 4 167

selected by applying the Elbow method [25]. Then, for every
cluster we identify the k-nearest neighbors of the respective
prototype. The number of k is defined automatically and it is
proportional to the length of the respective cluster with the
length of the total euploid population:

k = target population
size(clusterk)

size(euploid)
(1)

In the second row of Table IV, we present the distribution
of the k-means outputs that were built with the combination
of the biomarkers and the ultrasonographic markers. In this
example, we choose to reduce the euploid for training from
29790 to 503 cases. In the last row of Table IV we present
the number of the representative cases that are collected from
every cluster, using the Eq. 1.

In Fig. 4 we present a 2D plot of the biochemical markers
β-hCG (x-axis) and PAPP-A (y-axis) for the 5084 cases of
the first cluster that are shown with black dots. The prototype
of the cluster is shown with a white star and the 76-nearest
neighbors to the prototype are shown with grey crosses. It
is emphasized that in this representation, the cases that are
chosen as representatives are not necessarily the ones that
are closer to the prototype. This is due to the contribution
of the other markers used in the training of the k-means. That
would be the case if k-means were trained solely with the two
biomarkers β-hCG and PAPP-A.

G. Evaluation Protocol

Choosing the best ANN architecture for a problem under
study is not an easy task and it is usually done empirically by
the system designer [17]. In an attempt to choose the optimal
neural network architecture and parameters, we followed a grid

0 5 10 15 20 25
0

2

4

6

8

10

12

b−hCG

P
A

P
P

−
A

 

 

Input set

k−nearest neighbours

Prototype

Fig. 4: 2D plot of the biomarkers β-hCG and PAPP-A. The
euploid cases of the first k-means cluster are presented with
black dots. The prototype is shown with a white star and the
76-nearest to the prototype are shown with grey dots.

search approach using the training set of Dataset A to construct
24 neural networks by changing the number of neurons in the
hidden layer from 5 to 60, with step of 5 neurons, the logistic
and the hyperbolic tangent transfer functions. The network that
returned the best results on the validation set of Dataset A was
used to construct the networks for the Datasets B and C that
were used in all of our experiments. We use 50 nodes in the
hidden layer with logistic activation function.

III. RESULTS

The findings of our experiments are summarized in Figs.
5, 6 and 7 and Tables V, VI and VII. In Fig. 5 we show the
results of the Dataset B and we present the FPRs at 100%
DR for T21 of the eight ANN models that were built using
different combinations of the input markers. Additionally, we
visualize the difference of the results between the networks
trained with normalized and raw data with solid and dashed
lines respectively. The difference between the performance of
the raw and normalized ANNs is statistically significant for
Dataset B but not for Datasets A and C. In Dataset B, as
shown in Fig. 5, the “short” marker group (ID: 4, 5a, 5b and
6) returned relatively high FPR (>20%) while the long group
(ID: 7, 8a, 8b and 9) yielded significantly lower FPR.

In Fig. 6 we present the FPRs of the same models as in Fig.
5 at the 75% detection rate of the OCA. The “short” group
returned a FPR of 4.5% (in average of four ANNs) and of
8.5% for the models built with the normalized and raw values
respectively. There is no significant difference between the
FPRs (average of 0.2%) of the “long” normalized/raw marker
groups.

In an attempt to visualize the difference of the performance
between the balanced and imbalanced training sets, we cal-
culate the sensitivity and the 1-Specificity for different cut-
off values as explained in Section II-B and we present the
results of the network built with raw values and the marker
set with seven inputs in a Receiver Operating Characteristic
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(ROC) curve (Fig. 7). The sensitivity and the Specificity are
defined as shown in Eqs 2 and 3.

sensitivity =
TP

TP + FN
(2)

specificity =
TN

TN + FP
(3)

Where: TP, FN, TN and FP are abbreviations of the true
positive, false negative, true negative and false positive re-
spectively.

In Fig. 7 we superimpose the ROC curves for the networks
built with raw marker values for imbalanced and balanced
training sets using the “long” feature set with seven inputs.
The results of the balanced and imbalanced training sets are
distinguished with solid (black for T21) and dashed lines
respectively (grey for OCA). It is shown that there is a
significant difference between the DRs of the OCA built with
balanced and imbalanced datasets. The DR of the T21 has no
statistical difference.

In Tables V, VI and VII we show the results of the networks
built with the balanced and imbalanced training sets and the
raw and the normalized seven input markers for the three
datasets. In the first column of every table we present the type
of the network (balanced or imbalanced training sets, and raw
or normalized markers). In the second column we show the
FPR and in the last two the DRs for the T21 and the OCA
respectively.

The best results of the experiments done with Datasets
B and C were achieved with the ANNs built with the 7
markers group and raw balanced data (8% and 4.8% FPR). The
performance of the ANN built with the normalized Dataset
B is significantly weaker with a difference more than 10% of
FPR, compared to the ANNs built with the raw data. The same
experiment was done with Dataset C with no difference on the
results between raw and normalized data. With the results of
Dataset B, we suggest that the normalization of the data could
be avoided.

IV. DISCUSSION

In this work we demonstrate the effectiveness of the ANNs
schemes as a potential classifier for the diagnosis of the T21
and OCA, in the early stage of a pregnancy. Our principle aim
is to build models that ensure false negative classifications of
T21 at the lowest possible rate. The best results were achieved
with the 7 markers group (Dataset A: 100% DR of T21 and
FPR of 2.7%) with normalized imbalanced data. However, the
Dataset A was used as a training set to perform a grid search
over several parameters and architectures of the ANNs, as
explained in Section II-G. The same structure of ANN was
used in Datasets B and C and we found that the results are
not consistent with Dataset A. Additionally, from Table V we
observe that the above mentioned ANN built with Dataset A
returns the lowest DR of the OCA.

Another objective of this study was to optimize the FPR
with respect to the cost of every examination that is necessary
to be done for the estimation of the risk for aneuploidy. In
principle, the task is to determine the optimum number of
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Fig. 5: FPRs of the ANNs built with normalized (black bars)
and raw (grey bars) values of Dataset B at a T21 DR of 100%.
The results of the different input markers combinations are
shown in the x-axis.
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Fig. 6: FPRs of the ANNs built with normalized (black bars)
and raw (grey bars) values of Dataset B at a OCA DR of
75%. The results of the different input markers combinations
are shown in the x-axis.
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TABLE V: FPR and DR for T21 and OCA for the networks
built with Dataset A. The data are referred to the 7 markers
group and raw data.

Dataset A FPR T21 OCA
Imbalanced - Normalized 2.7% 100.0% 7.9%

Imbalanced - Raw 7.9% 100.0% 32.9%
Balanced - Normalized 10.0% 100.0% 73.7%

Balanced - Raw 8.3% 100.0% 69.7%

TABLE VI: FPR and DR for T21 and OCA for the networks
built with Dataset B. The data are referred to the 7 markers
group and raw data.

Dataset B FPR T21 OCA
Imbalanced - Normalized 34.2% 100.0% 90.6%

Imbalanced - Raw 7.9% 100.0% 83.5%
Balanced - Normalized 17.4% 100.0% 94.1%

Balanced - Raw 8.0% 100.0% 89.4%

TABLE VII: FPR and DR for T21 and OCA for the networks
built with Dataset C. The data are referred to the 7 markers
group and raw data.

Dataset C FPR T21 OCA
Imbalanced - Normalized 4.1% 100.0% 85.2%

Imbalanced - Raw 4.3% 98.1% 84.4%
Balanced - Normalized 5.8% 100.0% 85.2%

Balanced - Raw 4.8% 100.0% 85.2%

markers required as input to the classifier. We have examined
the robustness of the ANNs that are built with different com-
binations of input markers and we suggest two groups namely
the “short” and the “long”. The “short” group consisted of
markers that can be extracted in one visit to the doctor. We
achieve 100% detection rate of T21 at a relatively high FPR
of 25%. The “long” markers group consists of three additional
markers that can be extracted in another examination that
measures the flow of the DV and the TF using a Doppler
technique. The third marker is the NB that can be visualized
during the ultra scan. The “long” markers group achieves a
lower FPRs of 5%, at the same DR of 100% for T21 and
>80% DR of OCA.

The population under study is not normally distributed by
nature since pregnancy takes place in a certain age range
which is by nature skew to the right. In addition, the large
database used in this study is highly imbalanced due to
the very low prevalence of aneuploidy cases in the general
population, even though it contains much more trisomy cases
than reported statistically. For example trisomy 21 occurs 1
in 800 pregnancies, and thus in our database we should have
had less trisomy 21 cases than we actually have. Similarly
trisomy 18 occurs 1 in 5000 pregnancies and thus we should
again have even less cases.

One other possible reason of the non-normality distributions
of the euploid may be due to the increased significance of
those values that depart from normality. This is usually a case
when there is a large population such as the population of
the euploid cases in our database. Any method that measures
the normality of a distribution of large populations has high
probability of rejecting the null hypothesis that the sample

comes from a normal distribution.
From our experiments, see Fig. 5 in Section III, we conclude

that marker CRL does not contribute significantly to the
diagnostics of the system and hence it can be ignored. The
CRL is a physical distance between the crown and the rump
of the fetus and the obstetrician measures it during the ultra
scan. An accurate measurement of the CRL requires a specific
position of the fetus and other factors that are unpredictable.
Due to this fact, the distribution of the CRL values has a high
standard deviation.

The balanced ANNs shown in Fig. 7 yield lower FPRs
compared to imbalanced ANNs for the detection of the OCA
while no significant difference was found for the detection
of T21. Nevertheless, we suggest the use of a balanced
training set for the ANNs as the MSE reduces dramatically
compared to the score of the imbalanced training set. From
our results, we demonstrate that the networks trained with
balanced populations of euploid and aneuploid yield lower
FPRs compared to the imbalanced training sets and therefore
we suggest this method as a pre-processing step.

The estimation of the risk for T21 is currently done using a
SMM from the combination of the markers that are explained
in this paper and there is a DR of 95% of T21 at 5% FPR. Our
method outperforms the state-of-the-art method with 100% DR
of the T21 at the same FPR. Additionally our method detects
>80% of the OCA. From the two other non-invasive methods
(SSM and cell-free fetal DNA) for the diagnosis of aneuploidy
that are found in the literature, the cell-free fetal DNA test is
the most promising. Several published studies report perfect
separation between the euploid and aneuploid. However, there
is a practical problem of this method being the cost, which is
forbidding for general use. Moreover, the results are returned
after some considerable time. The proposed methodology
demonstrated in this paper can be used as a first screening
on the data for selecting the positively ranked cases (100%
T21, 85% OCA at 5% FPR) which will be the only ones
suggested for a cell-free fetal DNA test. This will limit the
overall cost for prenatal test and at the same time guarantee
zero undiagnosed T21 births.

V. FUTURE WORK

The combination of the “short” and “long” markers groups
could be a two-stage procedure for a first and second screening
for aneuploidy. The results of the “short” marker group are
returned immediately in the personal computer of the doctor
in one visit. These results assure that the negative prediction
does not contain any T21. All the positive cases will be re-
evaluated with the “long” group to estimate the final risk for
T21 and OCA. This work will be validated and reported in a
future work.

VI. CONCLUSION

Diagnosis of the T21 and OCA can be effectively achieved
with ANNs and a combination of biomarkers and ultrasono-
graphic markers in the early stage of pregnancy. We have used
three datasets to answer our research questions which include
the detection of all the T21 cases at the lowest FPR possible,
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the identification of an optimal combination of input markers,
the contribution of the normalized values of the data over the
raw and the possible use of training sets that are consisted
with balanced populations among euploid and aneuploid.

We have shown that the optimal combination of markers
belongs to the “long group” which requires ultrasonographic
and maternal blood examinations. Furthermore, the use of the
raw data appear to be significantly more effective for the
networks build with the “long group” but less effective for
the “short group”. Another contribution of this work is the
proposed method for the data reduction of the euploid using
the k-means algorithm in an attempt to create populations
balanced in numbers among euploid and aneuploid. We have
shown that the balanced sets appear to be more effective for
training the ANNs.

In this paper we present a system that is able to identify the
entire population of T21 and the majority of the OCA such
as T18, T13, Turner syndrome, and Triploidy. We have used
datasets with populations that ensure statistical confidence of
our results, compared to databases used in similar work of
other groups. We achieved with ANNs a 100.0% detection
rate of T21 and 85.2% of the OCA with FPR of 4.8%.
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