

#### INTRODUCTION

- Multifetal pregnancies are associated with an increased risk of maternal and perinatal morbidity and mortality compared to singleton pregnancies.
- Multifetal pregnancy reduction (MFPR) can be considered to reduce the total number of fetuses by one or more.

### OBJECTIVE

• To systematically review the literature on hypertensive disorders of pregnancy (HDP) after MFPR.

### METHODS

- A comprehensive search in PubMed, Embase, Web of Science and Scopus was performed.
- Prospective or retrospective studies reporting on MFPR from triplet or higherorder to twin compared to ongoing (i.e. non-reduced) triplets and/or twins were included.
- A meta-analysis of the primary outcome HDP was carried out using a randomeffects model.
- Subgroup analyses of gestational hypertension (GH) and preeclampsia (PE) were performed.
- Risk of bias was assessed using the Newcastle-Ottawa Quality Assessment Scale.

Amsterdam Reproduction & Development

# Hypertensive disorders of pregnancy after multifetal pregnancy reduction: a systematic review and meta-analysis

P.M. van Baar<sup>1</sup>, J.M. bij de Weg, E.A. ten Hove, L.J. Schoonmade, L. van de Mheen, E. Pajkrt, C.J.M. de Groot, M.A. de Boer

Accepted for publication in Hypertension in Pregnancy

## **Highlights**:

MFPR in women with triplet and higher-order multifetal pregnancies decreases the risk of HDP. Twelve women should undergo MFPR to prevent one case of HDP.

Figure 1. HDP after MFPR in triplets and higher-order to twin pregnancy versus ongoing triplet pregancies

|                                                                                                            | MFPR higher-order                     | o twin     | Ongoing                    | triplet |        | Odds Ratio          | Odds Ratio                                |
|------------------------------------------------------------------------------------------------------------|---------------------------------------|------------|----------------------------|---------|--------|---------------------|-------------------------------------------|
| Study or Subgroup                                                                                          | Events                                | Total      | Events                     | Total   | Weight | M-H, Random, 95% Cl | M-H, Random, 95% Cl                       |
| 1.1.1 3->2                                                                                                 |                                       |            |                            |         |        |                     |                                           |
| Boulot 1993                                                                                                | 6                                     | 28         | 8                          | 45      | 7.2%   | 1.26 [0.39, 4.12]   |                                           |
| Herlihy 2017                                                                                               | 5                                     | 42         | 7                          | 43      | 6.7%   | 0.69 [0.20, 2.39]   |                                           |
| Kadhel 1998                                                                                                | 2                                     | 17         | 2                          | 24      | 2.9%   | 1.47 [0.19, 11.59]  |                                           |
| Lee 2022                                                                                                   | 17                                    | 327        | 30                         | 225     | 15.2%  | 0.36 [0.19, 0.66]   | <b>_</b>                                  |
| Lipitz 1994                                                                                                | 2                                     | 31         | 11                         | 84      | 4.6%   | 0.46 [0.10, 2.19]   |                                           |
| Liu 2022                                                                                                   | 11                                    | 141        | 10                         | 41      | 9.8%   | 0.26 [0.10, 0.67]   |                                           |
| Macones 1993                                                                                               | 5                                     | 47         | 2                          | 14      | 3.8%   | 0.71 [0.12, 4.16]   |                                           |
| Okyay 2014                                                                                                 | 1                                     | 43         | 9                          | 65      | 2.8%   | 0.15 [0.02, 1.22]   |                                           |
| Porreco 1991                                                                                               | 1                                     | 13         | 4                          | 11      | 2.2%   | 0.15 [0.01, 1.58]   |                                           |
| Raval 2015                                                                                                 | 9                                     | 30         | 28                         | 102     | 10.4%  | 1.13 [0.46, 2.77]   |                                           |
| Sivan 2002                                                                                                 | 9                                     | 85         | 14                         | 103     | 10.5%  | 0.75 [0.31, 1.84]   |                                           |
| Subtotal (95% CI)                                                                                          |                                       | 804        |                            | 757     | 76.1%  | 0.55 [0.37, 0.83]   | $\bullet$                                 |
| Total events                                                                                               | 68                                    |            | 125                        |         |        |                     |                                           |
| Heterogeneity: Tau <sup>2</sup> =                                                                          | 0.10; Chi <sup>2</sup> = 12.94, df =  | 10 (P = 0  | ).23); l <sup>2</sup> = 23 | 3%      |        |                     |                                           |
| Test for overall effect:                                                                                   | Z = 2.85 (P = 0.004)                  |            |                            |         |        |                     |                                           |
| 440.0.0                                                                                                    |                                       |            |                            |         |        |                     |                                           |
| 1.1.2 ≥3->2                                                                                                | _                                     |            | _                          |         |        |                     |                                           |
| Angel 1999                                                                                                 | 5                                     | 16         | 7                          | 23      | 5.7%   | 1.04 [0.26, 4.13]   |                                           |
| Razaz 2017                                                                                                 | 6                                     | 45         | 5                          | 40      | 6.4%   | 1.08 [0.30, 3.84]   |                                           |
| Smith-Levitin 1996                                                                                         | 14                                    | 59         | 30                         | 54      | 11.8%  | 0.25 [0.11, 0.56]   |                                           |
| Subtotal (95% CI)                                                                                          |                                       | 120        |                            | 117     | 23.9%  | 0.58 [0.20, 1.70]   |                                           |
| Total events                                                                                               | 25                                    |            | 42                         |         |        |                     |                                           |
|                                                                                                            | 0.55; Chi <sup>2</sup> = 5.29, df = 2 | ! (P = 0.0 | 7); l² = 62%               | •       |        |                     |                                           |
| Test for overall effect:                                                                                   | Z = 0.99 (P = 0.32)                   |            |                            |         |        |                     |                                           |
| Total (95% CI)                                                                                             |                                       | 924        |                            | 874     | 100.0% | 0.55 [0.38, 0.79]   | •                                         |
| Total events                                                                                               | 93                                    |            | 167                        |         |        |                     |                                           |
| Heterogeneity: Tau <sup>2</sup> = 0.14; Chi <sup>2</sup> = 18.42, df = 13 (P = 0.14); l <sup>2</sup> = 29% |                                       |            |                            |         |        |                     |                                           |
| Test for overall effect: $Z = 3.18$ (P = 0.001)                                                            |                                       |            |                            |         |        | 0.01 0.1 1 10 100   |                                           |
|                                                                                                            | rences: Chi <sup>2</sup> = 0.01. df   | = 1 (P = 0 | $(93) I^2 = 0^9$           | %       |        |                     | MFPR higher-order to twin Ongoing triplet |
| rest for subgroup diffe                                                                                    |                                       | 1.1 - 0    |                            | /0      |        |                     |                                           |



### RESULTS

- Thirty studies with a total of 9,811 women were included.
- MFPR from triplet to twin was associated with lower risk for HDP compared to ongoing triplets (OR 0.55, 95% CI 0.37-0.83, p=0.004).
- In a subgroup analysis the decreased risk of HDP was driven by GH, and PE was no longer significant (OR 0.34, 95% CI, 0.17-0.70, p=0.004 and OR 0.64, 95% CI 0.38-1.09, p=0.10, respectively).
- HDP was also significantly lower after MFPR from all higher-order (including triplets) to twin compared to ongoing triplets (OR 0.55, 95% CI, 0.38-0.79, p=0.001).
- In a subgroup analysis the decreased risk of HDP was driven by PE, and GH was no longer significant (OR 0.55, 95% CI 0.32-0.92, p=0.02 and OR 0.55, 95% CI 0.28-1.06, p=0.08, respectively).

### DISCUSSION

- This meta-analysis suggests that MFPR in women with triplet and higher-order multifetal pregnancies decreases the risk of HDP compared to women with ongoing triplet pregnancies.
- For MFPR from triplet to twin versus ongoing triplets this is driven by GH and for MFPR from higher-order to twin versus ongoing triplets this is driven by PE.
- These data can be used in the decisionmaking process of MFPR, in which the individual risk factors of HDP can be taken into account.