20th World Congress in Fetal Medicine

External validation of the FMF competing risks model for the prediction of small neonates

Albaiges G, Papastefanou I, Rodríguez I, Prats P, Echevarria M, Rodriguez MA, Rodriguez Melcon A Hospital Universitario Dexeus., Barcelona, Spain

Objective

To examine the external validity of the new Fetal Medicine Foundation (FMF) competing risks model for the prediction of small for gestational age (SGA) neonates at mid-trimester.

Methods

This is a single center prospective cohort study in 25484 women with singleton pregnancies undergoing routine ultrasound examination at 19 - 24 weeks' gestation. We used the FMF competing risks model for prediction of SGA combining maternal factors, mid-trimester estimated fetal weight by ultrasoundscan (EFW) and uterine artery pulsatility index (UtA-PI), to calculate risks for different cut-offs of birth weight percentile and gestational age at delivery. We examined the predictive performance in terms of discrimination and calibration.

Results

The validation cohort had significant divergences in composition compared to the FMF cohort where the model was developed. At 10% false positive rate, maternal factors, EFW and UtA-PI yield a sensitivity of 69.6%, 38.7% and 31.7% for SGA <10 percentile delivered before 32, 37 and \geq 37 weeks' gestation, respectively. The respective numbers for SGA <3 percentile were 75.7%, 48.2% and 38.1%. These values were equal to the ones reported in the FMF study for SGA born <32 weeks gestation, and lower for SGA born <37 and \geq 37 weeks' gestation. The prediction in the validation cohort at a 15% FPR was 77.4%, 50.0% and41.5% for SGA <10 percentile born <32, <37 and \geq 37 weeks' gestation, respectively, similar to the respective figures reported in the FMF study at a 10% FPR. The performance, was similar to the one reported in the FMF study for the subgroup of Nulliparous and Caucasian women. The new model had satisfactory calibration.

Conclusion

The new competing risks model for SGA developed by the FMF performs relatively well in an independent large Spanish population.