

First-trimester prediction of preeclampsia: external validation of the FMF algorithm in non-selected Latin-American women

Martinez-Portilla R, Bermudez-Rojas ML, Juarez-Martinez I, Fernandez-Lara A, Martinez-Rodriguez M, Figueras F, Cruz-Martinez R
Children's and Women's Specialty Hospital of Queretaro, Mexico, Queretaro, Mexico

Objective

To assess the predictive performance of the FMF first trimester model for early (ePE) and late (IPE) preeclampsia (PE) in non-selected women from Mexico.

Methods

A validation cohort was created based on 6, 254 women consecutively attending a routine first trimester scan. Models included maternal factors, uterine artery Doppler, and blood pressure. Patient-specific risk for each model was calculated from the formula: odds/(1+odds), where odds=ey and Y was derived from the formula Y = -3. 657 + 1. 592 x logmaternal factor-derived a-priori risk for early PE + 31. 396 x logMAP MoM + 13. 322 x log uterine artery L-PI MoM, in case of ePE, and Y = -0. 468 + 2. 272 x logmaternal factor-derived a-priori risk for late PE + 21. 147 x logMAP MoM + 3. 537 x log uterine artery L-PI MoM, in case of IPE. Model performance was evaluated by Receiver-Operator-Characteristics (ROC) curve analysis for both, early and late preeclampsia.

Results

Preeclampsia occurred in 4% (250/6, 254). Out of this percentage 3. 2% (8/250) was diagnosed before 34 weeks of gestation. Performance for the ePE model depicted a 38% and 63% DR for a 5% and 10% false positive rate (FPR) respectively, with an AUC of 0. 752 (95% CI: 0. 525-979). The best cut-off point for individual high risk of ePE was below 1/35 pregnancies (63% DR for a 10% FPR). Model performance for IPE showed a 10% and 15% DR for a 5% and 10% FPR repectively, along with an AUC of 0. 515 (95% CI: 0. 475-0. 555).

Conclusion

In a non-selected Latin-American population, the FMF model underperform in their ability to correctly identify women who develop PE. This underlies the importance of developing region-specific predictive models for PE.