17th World Congress in Fetal Medicine

Non-invasive prenatal test for FGFR3-related skeletal dysplasia based on nextgeneration sequencing and plasma cell-free DNA

Ren Y, Zhao J, Li R, Xie Y, Jiang S, Zhou H, Liu H, You Y, Zhang X, Chen F, Wang W, Gao Y, Meng Y, Lu Y 1 Department of Obstetrics and Gynecology, Chinese PLA General Hospital, Beijing 100853, China. 2 BGI-Shenzhen, Shenzhen 518083, China 3 China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China 4 Laboratory of Genomics and Molecular Biomedicine, Dep, BEIJING, China

Objective

To explore the feasibility and accuracy of non-invasive prenatal test for detection of FGFR3-related skeletal dysplasia based on next-generation sequencing (NGS) from maternal plasma cell-free DNA.

Methods

Fragmented fetal genome DNA (gDNA) of achondroplasia (ACH) and thanatophoric dysplasia Type I (TD I) were mixed with post-delivery maternal plasma DNA to generate multiple spiked samples of different fetal fractions. Multiplex polymerase chain reaction was used to amplified the 19 FGFR3 loci and were sequenced by next-generation sequencing (NGS) to detect the fetal mutant alleles. Maternal plasma of pregnant women carrying ACH and TD I fetuses, as well as healthy controls, were tested by NGS. Sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were calculated for the test.

Results

Fetal FGFR3 mutation was detected in all artificial mixtures with fetal gDNA concentration of 10% 6% and 3%. In clinical validation, our method identified all fetal FGFR3 mutant alleles from maternal plasma, with no false positive results. The sensitivity, specificity, PPV, and NPV of our method were 100% (95% CI, 54. 1% ~100%), 100% (78. 2%~100%), 100% (54. 1% ~100%) and 100% (78. 2% ~100%), respectively.

Conclusion

The detection of fetal FGFR3 mutant alleles from maternal plasma by NGS was found to have high PPV and NPV. Our results emphasize the promising value of NGS as a non-invasive and thus favourable, prenatal test for the detection of de novo and paternal FGFR3-related skeletal dysplasia in early stage of gestation. Key words next-generation sequencing; non-invasive prenatal test; cell-free fetal DNA; achondroplasia; thanatophoric dysplasia; FGFR3.